Skip to main content
Log in

The Role of the Contact System in the Pathogenesis of Septic Shock

  • Published:
Sepsis

Abstract

The contact system traditionally has been considered to participate in the intrinsic pathway of coagulation. However, recent studies suggest that it rather may function as an auxillary fibrinolytic system. In addition, during activation of the system a number of biologically active proteases and peptides are generated that have potent inflammatory activities. Hence, the contact system likely plays a key role in regulating hemostatic and inflammatory responses. The contact system is activated during sepsis. Although bacteria or products derived therefrom may activate the system in vitro, it is not known whether these are the activators in vivo as well. Studies in animal models suggest that contact activation contributes to hypotension and to a number of inflammatory effects. Clinical studies support that contact activation may contribute to the hypotension in septic shock, but the relation to inflammatory reactions is less clear. Whether inhibition of contact activation constitutes a therapeutic option for patients with septic shock, remains to be established in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. J Biol Chem 1991;266:7353–7358.

    Google Scholar 

  2. Gailani D, Broze GJ Jr. Factor XI activation in a revised model of blood coagulation. Science 1991;253:909–912.

    Google Scholar 

  3. Broze GJ Jr. The role of tissue factor pathway inhibitor in a revised coagulation cascade. Sem Hematol 1992;29:159–169.

    Google Scholar 

  4. Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 1991; 30:10363–10370.

    Google Scholar 

  5. Minnema MC, Pajkrt D, Wuillemin WA, Roem D, Bleeker WK, Levi M, VanDeventer SJH, Hack CE, ten Cate H.Activation of factor XI without detectable contact activation in experimental human endotoxemia. Blood 1998;92:3294–3301

    Google Scholar 

  6. Borne PAKr von dem, Meijers JCM, Bouma BN. Feedback activation of factor XI by thrombin in plasma results in additional formation of thrombin that protects fibrin clots from fibrinolysis. Blood 1995;86:3035–3042.

    Google Scholar 

  7. Kaplan AP. The intrinsic coagulation, fibrinolytic and kininforming pathways of man. In: Kelley WN, Harris ED, Ruddy S, Sledge CB, eds. Textbook of Rheumatology. Philadelphia: WB Saunders, 1985:95–114.

    Google Scholar 

  8. Colman RW. Surface-mediated defense reactions. The plasma contact activation system. J Clin Invest 1984;73:1249–1253.

    Google Scholar 

  9. Kozin F, Cochrane CG. The contact activation system of plasma: Biochemistry and pathophysiology. In: Gallin JI, Goldstein IM, Snyderman R, eds. Inflammation: Basic Principles and Clinical Correlates. New York: Raven Press Ltd, 1988:101–120.

    Google Scholar 

  10. Minnema MC, Friederich PW, Levi M, von dem Borne PA, Mosnier LO, Meijers JC, Biemond BJ, Hack CE, Bouma BN, ten Cate H. Enhancement of rabbit jugular vein thrombolysis by neutralization of factor XI. In vivo evidence for a role of factor XI as an anti-fibrinolytic factor. J Clin Invest 1998;101:10–14.

    Google Scholar 

  11. Muller-Esterl W, Fritz H, Machleidt W, Ritonja A, Brzin J, Kotnik M, Turk V, Kellerman J, Lottspeich F. Human plasma kininogens are identical with alpha-cysteine proteinase inhibitors. FEBS Lett 1985;182:310–314.

    Google Scholar 

  12. Muller-Esterl W. Novel functions of the kininogens. Semin Thromb Hemost 1987;13:115–126.

    Google Scholar 

  13. Mandle R Jr, Colman RW, Kaplan AP. Identification of prekallikrein and high-molecular-weight kininogen as a complex in human plasma. Proc Natl Acad Sci USA 1976;73:4179–4183.

    Google Scholar 

  14. Thompson RE, Mandle R, Kaplan AP. Studies of binding of prekallikrein and factor XI to high molecular weight kininogen and its light chain. Proc Natl Acad Sci USA 1979;76:4862–4866.

    Google Scholar 

  15. Thompson RE, Mandle R Jr, Kaplan AP. Association of factor XI and high molecular weight kininogen in human plasma. J Clin Invest 1977;60:1376–1380.

    Google Scholar 

  16. Kerberiou DM, Bouma BN, Griffin JH. Immunochemical studies of human high molecular weight kininogen and of its complexes with prekallikrein or kallikrein. J Biol Chem 1980;255:3952–3958.

    Google Scholar 

  17. Griffin JH. Role of surface in surface-dependent activation of Hageman factor (blood coagulation Factor XII). Proc Natl Acad Sci USA 1978;75:1998–2002.

    Google Scholar 

  18. Tans G, Rosing J. Structural and functional characterisation of factor XII. Semin Thromb Hemost 1987;13:1–14.

    Google Scholar 

  19. Dunn JT, Silverberg M, Kaplan AP. The cleavage and formation of activated human Hageman factor by autodigestion and by kallikrein. J Biol Chem 1982;257:1779–1784.

    Google Scholar 

  20. Wiggins RC, Bouma BN, Cochrane CG, Griffin JH. Role of high molecular weight kininogen in surface-binding and activation of coagulation factor XI and prekallikrein. Proc Natl Acad Sci USA 1977;74:4636–4640.

    Google Scholar 

  21. Van Iwaarden F, Bouma BN. Role of high molecular weight kininogen in contact activation. Semin Thromb Hemost 1987;13:15–24.

    Google Scholar 

  22. Kaplan AP, Silverberg M. The coagulation-kinin pathway of human plasma. Blood 1987;70:1–15.

    Google Scholar 

  23. Scott CF, Silver LD, Schapira M, Colman RW. Cleavage of human high molecular weight kininogen markedly enhances its coagulant activity. Evidence that this molecule exists as a procofactor. J Clin Invest 1984;73:954–962.

    Google Scholar 

  24. Citarella F, Wuillemin WA, Lubbers YTP, Hack CE. Initiation of contact system activation in plasma is dependent on factor XII autoactivation and not on enhanced susceptibility of factor XII for kallikrein cleavage. Br J Haematol 1997;99:197–205.

    Google Scholar 

  25. Motta G, Rojkjaer R, Hasan AAK, Cines DB, Schmaier AH. High molecular weight kininogen regulates prekallikrein assembly and activation on endothelial cells: A novel mechanism for contact activation. Blood 1998;91:516–528.

    Google Scholar 

  26. Rojkaer R, Hasan AAK, Motta G, Schousboe I, Schmaier AH. Factor XII does not initiate prekallikrein activation on endothelial cells. Thromb Haemost 1998;80:74–81.

    Google Scholar 

  27. ColmanRW, SchmaierAH.Contactsystem:Avascularbiology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatoryattributes. Blood 1998;90:3819–3843.

  28. Hack CE. The role of factor XII in contact system activation. Blood 1998;92:703–704.

    Google Scholar 

  29. Nuijens JH, Huijbregts CCM, Cohen M, Navis GO, de Vries A, Eerenberg AJM, Bakker JC, Hack CE. Detection of activation of the contact system of coagulation in vitro and in vivo: Quantitation of activated Hageman factor-C1–inhibitor and kallikrein-C1–inhibitor complexes by specific radioimmunoassays. Thromb Haemost 1987;58:778–785.

    Google Scholar 

  30. Nuijens JH, Huijbregts CCM, Eerenberg AJM, Abbink JJ, Strack van Schijndel RJM, Felt-Bersma RJF, Thijs LG, Hack CE. Quantification of plasma factor XIIa-C1–inhibitor and kallikrein-C1–inhibitor complexes in sepsis. Blood 1988;72:1841–1848.

    Google Scholar 

  31. Kaufman N, Page JD, Pixley RA, Schein R, Schamaier AH, Colman RW. a2–Macroglobulin-kallikrein complexes detect contact system activation in hereditary angioedema and human sepsis. Blood 1991;77:2660–2667.

    Google Scholar 

  32. Bachmann F. Fibrinolysis. In: Verstraete M, Vermylen J, Lijnen R, Arnout J, eds. Thrombosis and Haemostasis XIth Congress. Leuven: Leuven University Press, 1987:227–265.

    Google Scholar 

  33. Kluft C, Dooijewaard G, Emeis JJ. Role of the contact system in fibrinolysis. Thromb Haemost 1987;13:50–68.

    Google Scholar 

  34. Jurg M, Binder BR. Kinetic analysis of plasminogen activation by purified plasma kallikrein. Thromb Res 1985;39:323–331.

    Google Scholar 

  35. Colman RW. Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun 1969;35:273–278.

    Google Scholar 

  36. Goldsmith GH, Saito H, Ratnoff OD. The activation of plasminogen by Hageman factor (factor XII) and Hageman factor fragments. J Clin Invest 1978;62:54–60.

    Google Scholar 

  37. Ichinose A, Fujikawa K, Suyama T. The activation of prourokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem 1986;261:3486–3489.

    Google Scholar 

  38. Binnema DJ, Dooijewaard G, Turion PNC. An analysis of the activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin fraction of normal plasma and of plasmas deficient in factor XII and prekallikrein. Thromb Haemost 1991;65:144–148.

    Google Scholar 

  39. Hauert J, Nicoloso G, Schleuning WD, Bachman F, Schapira M. Plasminogen activators in dextran sulfate-activated euglobulin fractions: A molecular analysis of factor XII-and prekallikrein-dependent fibrinolysis. Blood 1989;73:994–999.

    Google Scholar 

  40. Loza JP, Gurewich V, Johnstone M, Pannell R. Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: A mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis. Thromb Haemost 1994;71:347–352.

    Google Scholar 

  41. Lin Y, Harris RB, Yan W, McCrae KR, Zhang H, Colman RW. High molecular weight kininogen peptides inhibit the formation of kallikrein on endothelial cells surfaces and subsequent urokinase-dependent plasmin formation. Blood 1997;90:690–697.

    Google Scholar 

  42. Ratnoff OD, Busse RJ Jr, Sheon RP. The demise of John Hageman. N Engl J Med 1968;279:760–761.

    Google Scholar 

  43. Goodnough LT, Saito H, Ratnoff OD. Thrombosis or myocardial infarction in congenital clotting factor abnormalities and chronic thrombocytopenias: A report of 21 patients and a review of 50 previously reported cases. Medicine 1983;62:248–255.

    Google Scholar 

  44. Lammle B, Wuillemin WA, Huber I, Krauskopf M, Zurcher C, Pflugshaupt R, Furlan M. Thromboembolism and bleeding tendency in congenital factor XII de~ciency. A study on 74 subjects from 14 Swiss families. Thromb Haemost 1991;65:117–121.

    Google Scholar 

  45. Levi M, De Boer JP, Roem D, Ten Cate JW, Hack CE. Plasminogen activation in vivo upon intravenous infusion of DDAVP: Quantitative assessment of plasmin-a2–antiplasmin complexes with a novel monoclonal antibody based radioimmunoassay. Thromb Haemost 1992;67:111–116.

    Google Scholar 

  46. Levi M, Hack CE, De Boer JP, Brandjes DPM, Buller HR, ten Cate WJ. Reduction of contact activation related fibrinolytic activity in factor XII deficient patients. Further evidence for the role of the contact system in fibrinolysis in vivo. J Clin Invest 1991;88:1155–1160.

    Google Scholar 

  47. Yamamoto T, Cochrane CG. Guinae pig Hageman factor as a vascular permeability enhancement factor. Am J Pathol 1981;105:164–175.

    Google Scholar 

  48. Wachtfogel YT, Kucich U, James HV, Scott CF, Shapira M, Zimmerman M, Cohen AB, Colman RW. Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest 1983;72:1672–1677.

    Google Scholar 

  49. Ichinose M, Barnes PJ. Bradykinin-induced airway microvascular leakage and bronchoconstriction are mediated via a bradykinin B2 receptor. Am Rev Respir Dis 1990;142:1104–1107.

    Google Scholar 

  50. Mason DT, Melmon KL. Effects of bradykinin on fore-arm venous tone and vascular resistance in man. Circ Res 1965; 17:106–113.

    Google Scholar 

  51. Berg T, Schlichting E, Ishida H, Carretero OA. Kinin antagonist does not protect against the hypotensive response to endotoxin, anaphylaxis or acute pancreatitis. J Pharmacol Exp Ther 1989;251:731–734.

    Google Scholar 

  52. Ahluwalia A, Perretti M. Involvement of bradykinin B1 receptors in the polymorphonuclear leukocyte accumulation induced by IL-1a in vivo in the mouse. J Immunol 1996; 156:269–274.

    Google Scholar 

  53. Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990;323:27–36.

    Google Scholar 

  54. Brown NJ, Nadeau JH, Vaughan DE. Selective stimulation of tissue-type plasminogen activator (t-PA) in vivo by infusion of bradykinin. Thromb Haemost 1997;77:522–525.

    Google Scholar 

  55. Hong SL. Effect of bradykinin and thrombin on prostacyclin synthesis in endothelial cells from calf and pig aorta and human umbilical vein. Thromb Res 1980;18:787–795.

    Google Scholar 

  56. Colman RW, Wachtfogel YT, Kucich U, Weinbaum G, Hahn S, Pixley RA, Scott CF, De Agostini A, Burger D, Schapira M. Effect of cleavage of the heavy chain of human plasma kallikrein and its functional properties. Blood 1985;65:311–318.

    Google Scholar 

  57. Kaplan AP, Kay AB, Austen KF. A prealbumin activator pf prekallikrein. II. Appearance of chemotactic activity for neutrophils by the conversion of human prekallikrein to kallikrein. J Exp Med 1972;135:81–97.

    Google Scholar 

  58. Schapira M, Despland E, Scott CF, Boxer LA, Colman RW. Purified human plasma kallikrein aggregates human blood neutrophils. J Clin Invest 1982;69:1199–1202.

    Google Scholar 

  59. Wachtfogel YT, Pixley RA, Kucich U, AbramsW,Weinbaum G, Schapira M, Colman RW. Purified plasma factor XIIa aggregates human neutrophils and causes degranulation. Blood 1986;67:1731–1737.

    Google Scholar 

  60. Ghebrehiwet B, Randazzo BP, Dunn JT. Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest 1983;71:1450–1455.

    Google Scholar 

  61. Ghebrehiwet B, Silverberg M, Kaplan AP. Activations of the classical pathway of complement by Hageman factor fragment. J Exp Med 1981;153:665–676.

    Google Scholar 

  62. Kalter ES, van Dijk WC, Timmermans A, Verhoef J, Bouma BN. Activation of purified human plasma prekallikrein triggered by cell wall fractions of Escherichia coli and Staphylococcus aureus. J Infect Dis 1983;148:692–697.

    Google Scholar 

  63. Morrison DC, Cochrane CG. Direct evidence for Hageman factor (factor XII) activation by bacterial lipopolysaccharides (endotoxins). J Exp Med 1974;140:797–811.

    Google Scholar 

  64. Herwald H, Morgelin M, Olsen A, Rhen M, Dahlback B, Muller-Ester lW, Bjorck L. Activation of the contact system on bacterial surfaces. A clue to serious complications in infectious diseases. Nat Med 1998;4:298–302.

    Google Scholar 

  65. Kimball HR, Melmon KL, Wolff SM. Endotoxin-induced kinin production in man. Proc Soc Exp Biol Med 1972; 139:1078–1087.

    Google Scholar 

  66. Muller-Berghaus G, Schneberger R. Hageman factor activation in the generalized Schwartzman reaction induced by endotoxin. Br J Haematol 1971;21:513–522.

    Google Scholar 

  67. McKay DG, Muller-Berghaus G, Cruse V. Activation of Hageman factor by ellagic acid and the generalized Schwartzman reaction. Am J Pathol 1969;54:393–402.

    Google Scholar 

  68. Nies AS, Forsyth RP, Williams HE, Melmon KL. Contribution of kinins to endotoxin shock in unanesthitized Rhesus monkeys. Circ Res 1968;22:155–164.

    Google Scholar 

  69. Mason JM, Kleeberg V, Dolan P, Colman RW. Plasma kallikrein and Hageman factor in gram-negative bacteremia. Ann Intern Med 1970;73:545–551.

    Google Scholar 

  70. Pixley RA, De La Cadena RA, Page JD, Kaufman N, Wyshock EG, Colman RW, Chang A, Taylor FB Jr. Activation of the contact system in lethal hypotensive bacteremia in a baboon model. Am J Pathol 1992;140:897–906.

    Google Scholar 

  71. Pixley RA, De La Cadena R, Page JD, Kaufman N, Wyshock EG, Chang A, Taylor FB Jr, Colman RW. The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia: In vivo use of a monoclonal anti-factor XII antibody to block contact activation in baboons. J Clin Invest 1993;91:61–68.

    Google Scholar 

  72. Jansen PM, Pixley RA, Brouwer M, De Jong IW, Chang ACK, Hack CE, Taylor FB Jr, Colman RW. Inhibition of factor XII in septic baboons attenuates the activation of complement and fibrinolytic systems and reduces the release of interleukin-6 and neutrophil elastase. Blood 1996; 87:2337–2344.

    Google Scholar 

  73. Colman RW, Flores DN, DeLa Cadena RA, Scott CA, Cousens L, Barr PJ, Hoffman IB, Kueppers F, Idell S, Pisarello J. Recombinant alpha-1–antitrypsin Pittsburgh attenuates experimental gram-negative septicemia. Am J Pathol 1988;130:418–428.

    Google Scholar 

  74. Guerrero R, Velasco F, Rodriquez M, Lopez A, Rojas R, Alvarez MA, Villalba R, Rubio V, Torres A, Del Castillo D. Endotoxin-induced pulmonary dysfunction is prevented by C1–esterase inhibitor. J Clin Invest 1993;91:2754–2760.

    Google Scholar 

  75. De La Cadena RA, Suffredini AF, Page JD, Pixley RA, Kaufman N, Parrillo JE, Colman RW. Activation of the kallikrein-kinin system after endotoxin administration to normal human volunteers. Blood 1993;81:3313–3341.

    Google Scholar 

  76. Van Deventer SJH, Buller HR, Ten Cate JW, Aarden LA, Hack CE, Sturk A. Experimental endotoxemia in humans: Analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990;76:2520–2526.

    Google Scholar 

  77. Van der Poll T, Buller HR, ten Cate H, Wortel CH, Bauer KA, Van Deventer SJH, Hack CE, Sauerwein HP, Rosenberg RD, Ten Cate JW. Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med 1990;322:1622–1626.

    Google Scholar 

  78. Colman RW, Edelman R, Scott CF, Gilman RM. Plasma kallikrein activation and inhibition during typhoid fever. J Clin Invest 1978;61:287–296.

    Google Scholar 

  79. Smith-Erichsen N, Aasen AO, Gallimore MJ, Amundsen E. Studies of components of the coagulation systems in normal individuals and septic shock patients. Circ Shock 1982; 9:491–497.

    Google Scholar 

  80. Kalter ES, Daha MR, Ten Cate JW, Verhoef J, Bouma BN. Activation and inhibition of Hageman factor-dependent pathways and the complement systemin uncomplicated bacteremia or bacterial shock. J Infect Dis 1985;151:1019–1027.

    Google Scholar 

  81. Robinson JA, Kloduycky ML, Lock HH, Racic MR, Gunner RM. Endotoxin, prekallikrein, complement and systemic vascular resistance sequential measurements in man. Am J Med 1975;59:61–67.

    Google Scholar 

  82. Hesselvik JF, Blomback M, Brodin B, Maller R. Coagulation, fibrinolysis, and kallikrein systems in sepsis: Relation to outcome. Crit Care Med 1989;17:724–733.

    Google Scholar 

  83. Laemmle B, Tran TH, Ritz R. Plasma prekallikrein, factor XII, antithrombin III, C1–inhibitor and a2–macroglobulin in critically ill patients with suspected disseminated intravascular cragulation (DIC). Am J Clin Pathol 1984;82:396–404.

    Google Scholar 

  84. Martinez-Brotons F, Oncins JR, Mestres J, Amargos V, Reynaldo C. Plasma kallikrein-kinin system in patients with uncomplicated and septic shock. Comparison with cardiogenic shock. Thromb Haemost 1987;58:709–713.

    Google Scholar 

  85. Wilson RF, Farag A, Mammen EF, Fujii Y. Sepsis and antithrombin III, prekallikrein, and fibronectin levels in surgical patients. Surgery 1989;55:450–456.

    Google Scholar 

  86. Wilson RF, Mammen EF, Robson MC, Heggers JP, Soullier G, DePoli PA. Antithrombin, prekallikrein, and fibronectin levels in surgical patients. Arch Surg 1985;121:635–640.

    Google Scholar 

  87. Hack CE, Nuijens JH, Strack van Schijndel RJM, Abbink JJ, Eerenberg AJM, Thijs LG. A model for the interplay of inflammatory mediators in sepsis: A study in 48 patients. Intensive Care Med 1990;16:187–191.

    Google Scholar 

  88. Pixley RA, Zellis S, Bankes P, DeLa Cadena RA, Page JD, Scott CF, Kappelmayer J, Wyshock EG, Kelly JJ, Colman RW. Prognostic value of assessing contact system activation and factor V in systemic inflammatory response syndrome. Crit Care Med 1995;23:41–51.

    Google Scholar 

  89. Abbink JJ, Nuijens JH, Eerenberg AJM, Huijbregts CCM, Strack van Schijndel RJM, Thijs LG, Hack CE. Quantification of functional and inactivated a2–macroglobulin in sepsis. Thromb Haemost 1991;65:32–39.

    Google Scholar 

  90. Wuillemin WA, Fijnvandraat K, Derkx BHF, Peters M, Vreede W, ten Cate H, Hack CE. Activation of the intrinsic pathway of coagulation in children with meningococcal septic shock. Thromb Haemost 1995;74:1436–1441.

    Google Scholar 

  91. Hack CE, Voerman HJ, Eisele B, Keinecke H-O, Nuijens JH, Eerenberg AJM, Ogilvie A, Strack van Schijndel RJM, Delvos U, Thijs LG. C1–esterase inhibitor substitution in sepsis. Lancet 1992;339:378.

    Google Scholar 

  92. Pixley RA, Schapira M, Colman RW. The regulation of human factor XIIa by plasma proteinase inhibitors. J Biol Chem 1985;260:1723–1729.

    Google Scholar 

  93. De Agostini A, Lijnen HR, Pixley RA, Colman RW, Schapira M. Inactivation of factor XII active fragment in normal plasma. Predominant role of C1–Inhibitor. J Clin Invest 1984;73:1542–1549.

    Google Scholar 

  94. van der Graaf F, Koedam JA, Bouma BN. Inactivation of kallikrein in human plasma. J Clin Invest 1983;71:149–158.

    Google Scholar 

  95. Wuillemin WA, Minnema MC, Meijers JCM, Roem D, Eerenberg AJM, Nuijens JH, ten Cate H, Hack CE. Inactivation of factor XIa in human plasma assessed by measuring factor XIa-protease inhibitor complexes: major role for C1–inhibitor. Blood 1995;85:1517–1526.

    Google Scholar 

  96. Nuijens JH, Eerenberg-Belmer AJM, Huijbregts CCM, Schreuder WO, Felt-Bersma RJF, Abbink JJ, Thijs LG, Hack CE. Proteolytic inactivation of plasma C1–Inhibitor in sepsis. J Clin Invest 1989;84:443–450.

    Google Scholar 

  97. Carvalho AC, DeMarinis S, Scott CF, Silver LD, Schmaier AH, Colman RW. Activation of the contact system of plasma proteolysis in the adult respiratory distress syndrome. J Lab Clin Med 1988;112:270–277.

    Google Scholar 

  98. Brower MS, Harpel PC. Proteolytic cleavage and inactivation of a2–plasmin inhibitor and C1–inactivator by human polymorphonuclear leucocyte elastase. J Biol Chem 1982;257:9849–9854.

    Google Scholar 

  99. De Boer JP, Creasey AA, Chang A, Roem D, Eerenberg AJM, Hack CE, Taylor FB Jr. Activation of the complement system in baboons challenged with live E. coli: Correlation with mortality and evidence for a biphasic activation pattern. Infect Immun 1993;61:4293–4301.

    Google Scholar 

  100. Egbring R, Schmidt W, Fuchs G, Havermann K. Demonstration of granulocytic proteases in plasma of patients with acute leukemia and septicemia with coagulation defects. Blood 1977;49:219–231.

    Google Scholar 

  101. Duswald KH, Jochum M, Schramm W, Fritz H. Released granulocytic elastase: Indicator of pathobiochemical alterations in septicemia after abdominal surgery. Surgery 1985;98:892–898.

    Google Scholar 

  102. Seitz R, Wolf M, Egbring R, Radtke K-P, Liesenfeld A, Pittner P, Havemann K. Participation and interactions of neutrophil elastase in haemostatic disorders of patients with severe infections. Eur J Haematol 1987;38:231–240.

    Google Scholar 

  103. Jochum M, Witte J, Duswald KH, Inthorn D, Welter H, Fritz H. Pathobiochemistry of sepsis: Role of proteinases, proteinase inhibitors and oxidizing agents. Behring Inst Mitt 1986;79:121–130.

    Google Scholar 

  104. Schapira M, Scott CF, Colman RW. Contribution of plasma protease inhibitors to the inactivation of kallikrein in plasma. J Clin Invest 1982;69:462–468.

    Google Scholar 

  105. Harpel PC, Lewin MF, Kaplan AP. Distribution of plasma kallikrein between C1–inhibitor and a2–macroglobulin in plasma utilizing a new assay for a2–macroglobulin-kallikrein complexes. J Biol Chem 1985;260:4257–4263.

    Google Scholar 

  106. De Boer JP, Creasey AA, Chang A, Abbink JJ, Roem D, Eerenberg AJM, Hack CE, Taylor FB Jr. Alpha-2–macroglobulin functions as an inhibitor of fibrinolytic, clotting, and neuthropilic proteinases in sepsis: Studies using a baboon model. Infect Immun 1993;61:5035–5043.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hack, C.E., Colman, R.W. The Role of the Contact System in the Pathogenesis of Septic Shock. Sepsis 3, 111–118 (1999). https://doi.org/10.1023/A:1009895315442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009895315442

Keywords

Navigation