Variation in nutrient availability and plant species diversity across forb and graminoid zones of a Northern New England high salt marsh

Abstract

Plant zonation patterns across New England salt marshes have been investigated for years, but how nutrient availability differs between zones has received little attention. We investigated how N availability, P availability, and plant N status varied across Juncus gerardii, Spartina patens, and mixed forb zones of a Northern New England high salt marsh. We also investigated relationships between several edaphic factors and community production and diversity across the high marsh. P availability, soil salinity, and soil moisture were higher in the mixed forb zone than in the two graminoid zones. NH+ 4-N availability was highest in the J. gerardii zone, but NO 3-N availability and mid season net N mineralization rates did not vary among zones. Plant tissue N concentrations were highest in the mixed forb zone and lowest in the S. patens zone, reflecting plant physiologies more so than soil N availability. Community production was highest in the J. gerardii zone and was positively correlated with N availability and negatively correlated with soil moisture. Plant species diversity was highest in the mixed forb zone and was positively correlated with P availability and soil salinity. Thus, nutrient availability, plant N status, and plant species diversity varied across zones of this high marsh. Further investigation is needed to ascertain if soil nutrient availability influences or is a result of the production and diversity differences that exist between vegetation zones of New England high salt marshes.

This is a preview of subscription content, access via your institution.

References

  1. Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  2. Allen, S. E. 1989.Chemical analysis of ecological materials. Blackwell Scientific Publications, London.

    Google Scholar 

  3. Barbour, M. G., Burk, J. H., & Pitts, W. D. 1987. Terrestrial Plant Ecology. Benjamin Cummings, Menlo Park, California.

    Google Scholar 

  4. Bazely, D. R. & Jeffries, R. L. 1985. Goose faeces: a source of nitrogen for plant growth in a grazed Salt marsh. J. Appl. Ecol.22: 693-703.

    Google Scholar 

  5. Bertness, M. D. 1988. Peat accumulation and the success of marsh plants. Ecology 69: 703-713.

    Google Scholar 

  6. Bertness, M. D. 1991. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology 72: 125-137.

    Google Scholar 

  7. Bertness, M. D. & Ellison, A. M. 1987. Determinants of pattern in a New England salt marsh plant community. Ecol. Monog. 57: 129-147.

    Google Scholar 

  8. Bertness, M. D., Gough, L. & Shumway, S.W. 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842-1851.

    Google Scholar 

  9. Bertness, M. D. & Leonard, G. H. 1997. The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78: 1976-1989.

    Google Scholar 

  10. Binkley, P. & Matson, P. 1983. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Sci. Soc. Am. J. 47: 1050-1052.

    Google Scholar 

  11. Brewer, S. Levine, J. M. & Bertness, M. D. 1997. Effects of biomass removal and elevation on species richness in a New England salt marsh. Oikos 80: 333-341.

    Google Scholar 

  12. Burke, I. C. 1989. Control of nitrogen mineralization in a sagebrush steppe landscape. Ecology 70: 1115-1126.

    Google Scholar 

  13. Cavalieri, A. J. & Huang, A. H. C. 1979. Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment. Am. J. Bot. 66: 307-312.

    Google Scholar 

  14. Chapin, F. S., III, Reynolds, H. L., D'Antonio, C. M. & Eckhart, V. M. 1996. The functional role of species in terrestrial ecosystems. In: Global Change and Terrestrial Ecosystems. Walter, B. & Steffen, W. (Eds.). International Geospherebiosphere programme. Book series 2, Cambridge University Press, Cambridge, pp. 403-428.

    Google Scholar 

  15. Chapin, F. S., III & Shaver, G. R. 1985. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66: 564-576.

    Google Scholar 

  16. Ehleringer, J. R. & Monson, R. K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Ann. Rev. Ecol. Syst. 24: 411-439.

    Google Scholar 

  17. Goldberg, D. E. & Miller, T. E. 1990. Effects of different resource additions on species diversity in an annual plant community. Ecology 71: 213-225.

    Google Scholar 

  18. Gough, L., Grace, J. B. & Taylor, K. L. 1994. The relationship between species richness and community biomass: the importance of environmental variables. Oikos 70: 271-279.

    Google Scholar 

  19. Hacker, S. D. & Gaines, S. D. 1997. Some implications of direct positive interactions for community diversity. Ecology 78: 1990-2003.

    Google Scholar 

  20. Hemminga, M. A. & Buth, G. J. C. 1991. Decomposition in salt marsh ecosystems in the S. W. Netherlands: the effects of biotic and abiotic factors. Vegetatio 92: 73-83.

    Google Scholar 

  21. Hemminga, M. A., Kok, C. J. & De Munck, W. 1988. Decomposition of Spartina angelica roots and rhizomes in a salt marsh of the Wexserschelde estuary. Mar. Ecol. Prog. Ser. 48: 175-184.

    Google Scholar 

  22. Howes, B. L., Howarth, R. W., Teal, J. M. & Valiela, I. 1981. Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. Limnol. Oceanogr. 26: 350-360.

    Google Scholar 

  23. Huston, M. A. 1979. A general hypothesis of species diversity. Am. Nat. 113: 81-101.

    Article  Google Scholar 

  24. Jacobson, H. A. & Jacobson, G. L., Jr. 1987. Variability of vegetation in tidal marshes of Maine, USA. Can. J. Bot. 67: 230-238.

    Google Scholar 

  25. Jeffries, R. L. 1981.Osmotic adjustment and the response of halophytic plants to salinity. Bioscience 31: 42-46.

    Google Scholar 

  26. Jonasson, S. 1992. Plant responses to fertilization and species removal in tundra related to community structure and clonality. Oikos 63: 420-429.

    Google Scholar 

  27. Kaplan, W., Valiela, I. & Teal, J. M. 1979. Denitrification in a salt marsh ecosystem. Limnol. Oceanogr. 24: 726-734.

    Google Scholar 

  28. Kiehl, K., Esselink, P. & Bakker, J. P. 1997. Nutrient limitation and plant species Kiehl, K., Esselink, composition in temperate salt marshes. Oecologia 111: 325-330.

    Google Scholar 

  29. Langis, R., Zalejko, M. & Zedler, J. B. 1991. Nitrogen assessments in a constructed and a natural marsh of San Deigo Bay. Ecol. Appl. 1: 40-51.

    Google Scholar 

  30. Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey, USA.

    Google Scholar 

  31. Marborne, J. T. 1993. The plant and its biochemical adaptation to the environment. Academic Press, San Diego, USA.

    Google Scholar 

  32. Miller, W. B. & Egler, F. E. 1950. Vegetation of the Wequetequock-Pawcatuck tidal marshes, Connecticut. Ecol. Monogr. 20: 143-172.

    Google Scholar 

  33. Mitsch, W. J. & Gosselink, J. G. 1993. Wetlands. Van Nostrand Reinhold, New York.

    Google Scholar 

  34. Niering, W. A. & Warren, R. S. 1980. Vegetation patterns and processes in New England salt marshes. Bioscience 30: 301-307.

    Google Scholar 

  35. Nixon, S. W. 1982. The ecology of New England high salt marshes: a community profile. United States Department of the Interior, Washington, DC.

    Google Scholar 

  36. Patrick, W. H. & Mahapatra, I. C. 1968. Transformations and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 20: 323-360.

    Google Scholar 

  37. Pigott, C. D. 1969. Influence of mineral nutrients on zonation of flowering plants in coastal salt marshes. Pp. 25-55. In: Rorison, C. H. (ed.),Ecological aspects of mineral nutrition of plants.

  38. Rozema, J. 1979. Population dynamics and ecophysiological adaptations of some coastal members of Juncaceae and Gramineae. Pp. 229-241. In: Jeffries, R. L. & Davy, A. J. (eds), Ecological Processes in Coastal Environments. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  39. Ruber, E., Gillis, G. & Montagna, P. A. 1981. Production of dominant emergent vegetation and of pool algae on a northern Massachusetts salt marsh. Bull. Torrey Bot. Club 108: 180-188.

    Google Scholar 

  40. Ruess, R. W., Flik, D. S. & Jeffries, R. L. 1989. The role of lesser snow geese as nitrogen processors in a sub-arctic salt marsh. Oecologia 77: 382-386.

    Google Scholar 

  41. SAS, Institute, Inc. 1996. JMP start statistics.

  42. Tabachnick, B. G. & Fidell, L. S. 1989. Using multivariate statistics. Harper Collins Publishers, New York.

    Google Scholar 

  43. Tilman, D. 1984. Plant dominance along an experimental nutrient gradient. Ecology 65: 1445-1453.

    Google Scholar 

  44. Tilman, D. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monog. 57: 189-214.

    Google Scholar 

  45. Tyler, G. 1967. On the effect of phosphorous and nitrogen, supplied to Baltic Shore Meadow vegetation. Bot. Notiser. 120: 433-437.

    Google Scholar 

  46. Vahela, I., Collins, G., Kremer, L., Lajtha, K., Geist, M., Seely, B., Brawley, J. & Sham, C. H. 1997. Nitrogen loading from coastal watersheds to receiving estuaries: new method and application. Ecol. Appl. 7: 358-380.

    Google Scholar 

  47. Valiela, I. & Teal, J. M. 1974. Nutrient limitation in salt marsh vegetation. Pp. 547-563. In: Reimold, R. J. & Queen, W. H. (eds), Ecology of halophytes. Academic Press, New York.

    Google Scholar 

  48. Vermeer, J. G. & Berendse, F. 1983. The relationship between nutrient availability, shoot biomass, and species richness in grassland and wetland communities. Vegetatio 53: 121-126.

    Google Scholar 

  49. Warren, R. S. & Niering. W. A. 1993. Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74: 96-103.

    Google Scholar 

  50. Willet, I. R. 1989. Causes and prediction of changes in extractable phosphorus during tidal flooding. Austr. J. Soil Res. 27: 45-54.

    Google Scholar 

  51. Wyn Jones, R. G. & Storey, R. 1981. Betaines. Pp. 171-204. In: Paleq, L. G. & Aspinall, D. (eds), The physiology and biochemistry of drought resistance in plants. Academic Press, Australia.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Theodose, T.A., Roths, J.B. Variation in nutrient availability and plant species diversity across forb and graminoid zones of a Northern New England high salt marsh. Plant Ecology 143, 219–228 (1999). https://doi.org/10.1023/A:1009887727465

Download citation

  • mineralization
  • nitrogen
  • phosphorus
  • salinity
  • stress