Skip to main content
Log in

Impact of Recent Molecular Studies on Evaluation of Ventricular Arrhythmias

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fozzard HA, Arnsdorf MF. Cardiac electrophysiology. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, eds. The Heart and Cardiovascular System: Scientific Foundations. New York: Raven Press, 1991:63–98.

    Google Scholar 

  2. Roden DM. Antiarrhythmic drugs. In: Hardman JL, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG, eds. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: McGraw-Hill, 1995: 839–874.

    Google Scholar 

  3. Ackerman MJ, Clapham DE. Mechanisms of disease-Ion channels: Basic science and clinical disease. N Engl J Med 1997;336:1575–1586.

    Google Scholar 

  4. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995;80:795–803.

    Google Scholar 

  5. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genetics 1996;12:17–23.

    Google Scholar 

  6. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT. Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 1996;384:80–83.

    Google Scholar 

  7. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 1996;384:78–80.

    Google Scholar 

  8. Gellens ME, George AL Jr, Chen LQ, Chahine M, Horn R, Barchi RL, Kallen RG. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci 1992;89:554–558.

    Google Scholar 

  9. Slish DF, Engle DB, Varadi G, Lotan I, Singer D, Dascal N, Schwartz. Evidence for the existence of a cardiac specific isoform of the alpha 1 subunit of the voltage dependent calcium channel. FEBS Lett 1989;250:509–514.

    Google Scholar 

  10. Cribbs LL, Lee J, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Fox M, Rees M, Perez-Reyes E. Cloning and characterization of ?1H from human heart, a member of the t-type Ca2+ channel gene family. Circ Res 1998;103–109.

  11. Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilarbryan L, Bryan J, Seino S. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 1996;16:1011–1017.

    Google Scholar 

  12. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998;93:717–729.

    Google Scholar 

  13. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M. A family of hyperpolarization-activated mammalian cation channels. Nature 1998;393:587–591.

    Google Scholar 

  14. Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 1998;393:583–587.

    Google Scholar 

  15. Davis LM, Rodefeld ME, Green K, Beyer EC, Saffitz JE. Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol 1995;6:813–822.

    Google Scholar 

  16. England SK, Uebele VN, Shear H, Kodali J, Bennett PB, Tamkun MM. Characterization of a voltage-gated K+channel beta subunit expressed in human heart. Proc Natl Acad Sci 1995;6309–6313.

  17. Murray KT, Hu N, England SK, Mashburn A, Watson M, Tamkun MM. Coexpression of a beta subunit enhances the effect of a phorbol ester on the Kv1.5 channel. Circulation 1996;94:I-473 (Abstract).

    Google Scholar 

  18. Accili EA, Kiehn J, Yang Q, Wang ZG, Brown AM, Wible BA. Separable Kv-beta subunit domains alter expression and gating of potassium channels. J Biol Chem 1997;272:25824–25831.

    Google Scholar 

  19. Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, Becker A, Socolich M, Zuker CS. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 1997;388:243–249.

    Google Scholar 

  20. Gray PC, Johnson BD, Westenbroek RE, Hays LG, Yates JR, Scheuer T, Catterall WA, Murphy BJ. Primary structure and function of an A kinase anchoring protein associated with calcium channels. Neuron 1998;20:1017–1026.

    Google Scholar 

  21. Davies MP, An RH, Doevendans P, Kubalak S, Chien KR, Kass RS. Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res 1996;78:15–25.

    Google Scholar 

  22. Wang L, Duff HJ. Developmental changes in transient outward current in mouse ventricle. Circ Res 1997;81:120–127.

    Google Scholar 

  23. Wang L, Feng ZP, Kondo CS, Sheldon RS, Duff HJ. Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res 1996;79:79–85.

    Google Scholar 

  24. Abrahamsson C, Palmer M, Ljung B, Duker G, Baeaernhielm C, Carlsson L, Danielsson B. Induction of rhythm abnormalities in the fetal rat heart. A tentative mechanism for the embryotoxic effect of the class III antiarrhythmic agent almokalant. Cardiovasc Res 1994;28:337–344.

    Google Scholar 

  25. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current: Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 1990;96:195–215.

    Google Scholar 

  26. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995;81:299–307.

    Google Scholar 

  27. Blumenthal EM, Kaczmarek LK. Modulation by cAMP of a slowly activating potassium channel expressed in Xenopus oocytes. J Neuroscience 1992;12:290–296.

    Google Scholar 

  28. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PKS. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes: Mechanism of action. Circ Res 1991;68:77–84.

    Google Scholar 

  29. Splawski I, Tristanti-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nature Genetics 1997;17:338–340.

    Google Scholar 

  30. Jurkiewicz NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent: Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circ Res 1993;72:75–83.

    Google Scholar 

  31. Hondeghem LM, Snyders DJ. Class III Antiarrhythmic agents have a lot of potential, but a long way to go: Reduced effectiveness and dangers of reverse use-dependence. Circulation 1990;81:686–690.

    Google Scholar 

  32. Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 1995;374:135–141.

    Google Scholar 

  33. Wang Z, Fermini B, Nattel S. Delayed rectifier outward current and repolarization in human atrial myocytes. Circ Res 1993;73:276–285.

    Google Scholar 

  34. Antzelevitch C, Sicouri S, Lukas A, Nesterenko VV, Liu DW, Di Diego JM. Regional differences in the electrophysiology of ventricular cells: Physiological and clinical implications. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W.B. Saunders Co., 1995:228–245.

    Google Scholar 

  35. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes: A weaker IKs contributes to the longer action potential of the M cell. Circ Res 1995;76:351–365.

    Google Scholar 

  36. Yue DT, Herzig S, Marban E. Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci 1990;87:753–757.

    Google Scholar 

  37. Roden DM, Lazzara R, Rosen MR, Schwartz PJ, Towbin JA, Vincent GM, The SADS Foundation Task Force on LQTS. Multiple mechanisms in the long QT syndrome: Current knowledge, gaps, and future directions. Circulation 1996;94:1996–2012.

    Google Scholar 

  38. Keating MT. The long QT syndrome. A review of recent molecular genetic and physiologic discoveries. Medicine 1996;75:1–5.

    Google Scholar 

  39. Wang Q, Chen Q, Towbin JA. Genetics, molecular mechanisms and management of long QT syndrome. Annals of Medicine 1998;30:58–65.

    Google Scholar 

  40. Ackerman MJ. The long QT syndrome: Ion channel diseases of the heart. Mayo Clinic Proceedings 1998;73:250–269.

    Google Scholar 

  41. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995;80:805–811.

    Google Scholar 

  42. Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of HERG K+ channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci 1996;93:2208–2212.

    Google Scholar 

  43. Bennett PB, Yazawa K, Makita N, George AL, Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995;376:683–685.

    Google Scholar 

  44. Dumaine R, Wang Q, Keating MT, Hartmann HA, Schwartz PJ, Brown AM, Kirsch GE. Multiple mechanisms of sodium channel-linked long QT syndrome. Circ Res 1996;78:916–924.

    Google Scholar 

  45. Kambouris NG, Nuss HB, Johns DC, Tomaselli GF, Marban E, Balser JR. Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. Circulation 1998;97:640–644.

    Google Scholar 

  46. Kupershmidt S, Snyders DJ, Raes A, Roden DM. A K+ channel splice variant common in human heart lacks a C-terminal domain required for expression of rapidly-activating delayed rectifier current. J Biol Chem 1998 (In Press).

  47. Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL, Schwartz PJ, Towbin JA, Vincent GM, Lehmann MH, Keating MT, MacCluer JW, Timothy KW. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 1995;92:2929–2934.

    Google Scholar 

  48. Schwartz PJ, Moss AJ, Priori SG, Wang Q, Lehmann MH, Timothy K, Denjoy I, Haverkamp W, Guicheney P, Paganini V, Scheinman MM, Karnes PS. Gene-specific influence on the tirggers for cardiac arrest in the long QT syndrome. Circulation 1997;96:I-212 (Abstract).

    Google Scholar 

  49. Wang DW, Yazawa K, Makita N, George AL, Bennett PB. Pharmacological targeting of long QT mutant sodium channels. J Clin Invest 1997;99:1714–1720.

    Google Scholar 

  50. Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantù F, Towbin JA, Keating MT, Hammoude H, Brown AM, Chen LSK, Colatsky TJ. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate: Implications for gene-specific therapy. Circulation 1995;92:3381–3386.

    Google Scholar 

  51. Roden DM, Iansmith DH, Woosley RL. Frequency-dependent interactions of mexiletine and quinidine on depolarization and repolarization in canine Purkinje fibers. J Pharmacol Exp Ther 1987;243:1218–1224.

    Google Scholar 

  52. Valois M, Sasyniuk BI. Modification of the frequency-and voltage-dependent effects of quinindine when administered in combination with tocainide in canine Purkinje fibers. Circulation 1987;76:427–441.

    Google Scholar 

  53. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 1997;96:2038–2047.

    Google Scholar 

  54. Dangman KH, Hoffman BF. In vivo and in vitro antiarrhythmic and arrhythmogenic effects of N-acetyl procainamide. J Pharmacol Exp Ther 1981;217:851–862.

    Google Scholar 

  55. Brachmann J, Scherlag BJ, Rosenshtraukh LV, Lazzara R. Bradycardia-dependent triggered activity: Relevance to drug-induced multiform ventricular tachycardia. Circulation 1983;68:846–856.

    Google Scholar 

  56. Roden DM, Hoffman BF. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers. Relationship to potassium and cycle length. Circ Res 1985;56:857–867.

    Google Scholar 

  57. El-Sherif N, Chinushi M, Caref EB, Restivo M. Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de pointes tachyarrhythmias in the long-QT syndrome: detailed analysis of ventricular tridimensional activation patterns. Circulation 1997;96:4392–4399.

    Google Scholar 

  58. Hii JT, Wyse DG, Gillis AM, Duff HJ, Solylo MA, Mitchell LB. Precordial QT interval dispersion as a marker of torsade de pointes. Disparate effects of class Ia antiarrhythmic drugs and amiodarone. Circulation 1992;86:1376–1382.

    Google Scholar 

  59. Day CP, McComb JM, Campbell RWF. QT dispersion: An indication of arrhythmia risk in patients with long QT intervals. Br Heart J 1990;63:342–344.

    Google Scholar 

  60. January CT, Moscucci A. Cellular mechanisms of early afterdepolarizations. Annls NY Acad Sci 1992;644:23–32.

    Google Scholar 

  61. Szabo B, Kovacs T, Lazzara R. Role of calcium loading in early afterdepolarizations generated by Cs+ in canine and guinea pig Purkinje fibers. J Cardiovasc Electrophysiol 1995;6:796–812.

    Google Scholar 

  62. Donger C, Denjoy I, Berthet M, Neyroud N, Cruaud C, Bennaceur M, Chivoret G, Schwartz K, Coumel P, Guicheney P. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation 1997;96:2778–2781.

    Google Scholar 

  63. Napolitano C, Priori SG, Schwartz PJ, Cantu F, Paganini V, Matteo PS, de Fusco M, Pinnavaia A, Aquaro G, Casari G. Identification of a long QT syndrome molecular defect in drug-induced torsades de pointes. Circulation 1997;96:I-211 (Abstract).

    Google Scholar 

  64. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nature Genetics 1997;15:186–189.

    Google Scholar 

  65. Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT. Molecular basis of the long QT syndrome associated with deafness. N Engl J Med 1997;336:1562–1567.

    Google Scholar 

  66. Vetter DE, Mann JR, Wangemann P, Liu J, McLaughlin KJ, Lesage F, Marcus DC, Lazdunski M, Heinemann SH, Barhanin J. Inner ear defects induced by null mutation of the isk gene. Neuron 1996;17:1251–1264.

    Google Scholar 

  67. Spirito P, Seidman CE, McKenna WJ, Maron BJ. The management of hypertrophic cardiomyopathy. N Engl J Med 1997;336:775–785.

    Google Scholar 

  68. Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998;280:750–752.

    Google Scholar 

  69. Brugada R, Tapscott T, Czernuszewicz GZ, Marian AJ, Iglesias A, Mont, L, Brugada J, Girona J, Domingo A, Bachinski LL, Roberts R. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med 1997;336:905–911.

    Google Scholar 

  70. Messina DN, Speer MC, Pericakvance MA, Mcnally EM. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am Human Genetics 1997;61:909–917.

    Google Scholar 

  71. Rampazzo A, Nava A, Erne P, Eberhard M, Vian E, Slomp P, Tiso N, Thiene G, Danieli GA. A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42-q43. Hum Molec Gen 1995;4:2151–2154.

    Google Scholar 

  72. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O'Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG, et al. Mutations in the genes for cardiac troponin T and alphatropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995;332:1058–1064.

    Google Scholar 

  73. Moolman JC, Corfield VA, Posen B, Ngumbela K, Seidman C, Brink PA, Watkins H. Sudden death due to Troponin T mutations. J Am Coll Cardiol 1997;29:549–555.

    Google Scholar 

  74. Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 1998; 338:1248–1257.

    Google Scholar 

  75. Brugada J, Brugada R, Brugada P. Right bundle-branch block and ST-segment elevation in leads V-1 through V-3-A marker for sudden death in patients without demonstrable structural heart disease. Circulation 1998;97:457–460.

    Google Scholar 

  76. Nademanee K, Veerakul G, Nimmannit S, Chaowakul V, Bhuripanyo K, Likittanasombat K, Tunsanga K, Kuasirikul S, Malasit P, Tansupasawadikul S, Tatsanavivat P. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 1997;96:2595–2600.

    Google Scholar 

  77. Chen QY, Kirsch GE, Zhang DM, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G, Ortizlopez R, Wang Z, Antzelevitch C, Obrien RE, Schulzebahr E, Keating MT, Towbin JA, Wang. Genetic basis and molecular mechanism for idiopathic-Ventricular fibrillation. Nature 1998;392:293–296.

    Google Scholar 

  78. Krishnan SC, Antzelevitch C. Sodium channel block produces opposite electrophysiological effects in canine ventricular epicardium and endocardium. Circ Res 1991;69:277–291.

    Google Scholar 

  79. Tomaselli GF, Beuckelmann DJ, Calkins HG, Berger RD, Kessler PD, Lawrence JH, Kass D, Feldman AM, Marban E. Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation 1994;90:2534–2539.

    Google Scholar 

  80. Näbauer M, Beuckelmann DJ, Erdmann E. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ Res 1993;73:386–394.

    Google Scholar 

  81. Nabauer M, Kaab S. Potassium channel down-regulation in heart failure. Cardiovasc Res 1998;37:324–334.

    Google Scholar 

  82. Beuckelmann DJ, Näbauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992;85:1046–1055.

    Google Scholar 

  83. Hart G. Cellular electrophysiology in cardiac hypertrophy and failure. Cardiovasc Res 1994;28:933–946.

    Google Scholar 

  84. Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation 1992;85:1175–1188.

    Google Scholar 

  85. Pinto JM, Boyden PA. Reduced inward rectifying and increased E-4031-sensitive K+ current density in arrhythmogenic subendocardial purkinje myocytes from the infarcted heart. J Cardiovasc Electrophysiol 1998;9:299–311.

    Google Scholar 

  86. Ursell PC, Gardner PI, Albala A, Fenoglio JJJ, Wit AL. Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res 1985;56:436–451.

    Google Scholar 

  87. Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed Connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 1997;95:988–996.

    Google Scholar 

  88. Mays DJ, Foose JM, Philipson LH, Tamkun MM. Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue. J Clin Invest 1995;96:282–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roden, D.M. Impact of Recent Molecular Studies on Evaluation of Ventricular Arrhythmias. J Interv Card Electrophysiol 4 (Suppl 1), 7–16 (2000). https://doi.org/10.1023/A:1009882524965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009882524965

Keywords

Navigation