Plant Ecology

, Volume 146, Issue 1, pp 29–41 | Cite as

The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA

  • Eric W. Sanderson
  • Susan L. Ustin
  • Theodore C. Foin
Article

Abstract

Tidal channels influence the distribution and composition of salt marsh vegetation in a San Francisco Bay salt marsh. Two channel networks in the Petaluma Marsh, Sonoma County, CA, were mapped and characterized using global positioning and geographic information systems. Plant species abundance was sampled on transects placed perpendicular to and extending away from the channel banks. The vegetation showed significant increases in species richness along channel banks and larger areas of effect which increased approximately linearly with channel size. Composition of species assemblages varies with distance from the channel bank and channel size. These results demonstrate that salt marsh plant assemblages, composed of both major and minor species, are distributed with respect to the channel network in Petaluma Marsh.

California salt marsh Channel order Vegetation patterns Wetland restoration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, P. 1990. Saltmarsh ecology. Cambridge University Press: Cambridge.Google Scholar
  2. Atwater, B. F., Conrad, S. G., Dowden, J. N., Hedel, C. W., Mac-Donald, R. L. & Savage, W. 1980. History of landforms and vegetation of the estuary' tidal marshes in San Francisco Bay. Pp. 347–384. In: Conomos, T. J. (ed), The urbanized estuary. Pacific Division American Association for the Advancement of Science, San Francisco, CA.Google Scholar
  3. Barbour, M. G., Burk, J. H. & Pitts, W. D. 1987. Terrestrial Plant Ecology. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA.Google Scholar
  4. Balling, S. & Resh V. 1983. The influence of mosquito control recirculation ditches on plant biomass, production and composition in two San Francisco Bay salt marshes. Estuarine, Coastal Shelf Sci. 16: 151–161.Google Scholar
  5. Bertness, M. D. 1991. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology 72: 125–137.Google Scholar
  6. Bertness, M. D. & Ellison, A. M. 1987. Determinants of pattern in a New England salt marsh plant community. Ecol. Monogr. 57: 129–147.Google Scholar
  7. Bertness, M. D. & Shumway, S. W. 1993. Competition and facilitation in marsh plants. Am. Nat. 142: 718–724.Google Scholar
  8. Bertness, M. D., Gough, L. & Shumway, S.W. 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842–1851.Google Scholar
  9. Brown, A. M. & Bledsoe, C. 1996. Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J. Ecol. 84: 703–715.Google Scholar
  10. Callaway, R. M., Jones, S., Ferren, W.R. & Parikh, A. 1990. Ecology of a Mediterranean-climate estuarine wetland at Carpinteria, California – plant distributions and soil salinity in the upper marsh. Can. J. Bot. 68: 1139–1146.Google Scholar
  11. Chapman, V. J. 1960. Salt marshes and salt deserts of the world. Interscience Publishers, London.Google Scholar
  12. Collins, J. & Resh, V. 1985. Utilization of natural and man-made habitat by the salt marsh song sparrow, Melospiza melodia samuelis (Baird). California Fish Game 71: 40–52.Google Scholar
  13. Collins, J., Collins, L., Leopold, L. & Resh, V. 1986. The influence of mosquito control ditches on the geomorphology of tidal marshes in the San Francisco Bay area: Evolution of salt marsh mosquito habitats. Proceedings of the 54th Annual Conference of California Mosquito & Vector Control Association, pp. 91–95.Google Scholar
  14. De Groot, D. S. 1927. The California Clapper Rail: its nesting habits, enemies and habitat. Condor 29(6): 259–270.Google Scholar
  15. Desmond, J. S., Williams, G. D. and Zedler, J. B. In press. Fish use of tidal creek habitats in two southern California salt marshes. Ecological Engineering.Google Scholar
  16. Haltiner, J., Zedler, J. B., Boyer, K. E., Williams, G. D., and Callaway, J. C. 1997. Influence of physical processes on the design, functioning and evolution of restored tidal wetlands in California. Wetlands Ecol. Manag. 4: 73–91.Google Scholar
  17. Hickman, J. C. 1993. The Jepson Manual: higher plants of California. University of California Press, Berkeley, CA.Google Scholar
  18. Hinde, H. 1954. Vertical distribution of salt marsh phanerogams in relation to tide levels. Ecol. Monographs 24: 209–225.Google Scholar
  19. Josselyn, M. 1983. The Ecology of San Francisco Bay Tidal Marshes: a community profile. US Fish and Wildlife Service, Washington, D.C. USA.Google Scholar
  20. King, G. M., Klug, M. T., Wiegert, R. G. & Chalmers, A.G. 1982. Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia salt marsh. Science 218: 61–63.Google Scholar
  21. Leopold, L. B., Collins, J. N. & Collins, L. M. 1993. Hydrology of some tidal Channels in estuarine marshland near San Francisco. Catena 20: 469–493.Google Scholar
  22. Ludwig, J. A. & Reynolds, J.F. 1988. Statistical Ecology. John Wiley & Sons, New York, NY.Google Scholar
  23. Mahall, B. E., & Park, R. B. 1976a. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of northern San Francisco Bay I. Biomass and productivity. J. Ecol. 64: 421–433.Google Scholar
  24. Mahall, B. E. & Park, R. B. 1976b. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of northern San Francisco Bay II. Soil water and salinity. J. Ecol. 64: 793–809.Google Scholar
  25. Mahall, B. E. & Park, R. B. 1976c. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of Northern San Francisco Bay III. Soil aeration and tidal immersion. J. Ecol. 64: 811–819.Google Scholar
  26. Marin/Sonoma Mosquito and Vector Control District (1997) ‘Mosquito Control’. Internet: http://www.sonic.net/~smvcd/moscontr.html.Google Scholar
  27. Marshall, J. T. 1948. Ecologic races of Song Sparrows in the San Francisco Bay region Part 1. Habitat and abundance. Condor 50: 193–215.Google Scholar
  28. Mason, H. 1957. A flora of the marshes of California. University of California Press, Berkeley, CA.Google Scholar
  29. Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York.Google Scholar
  30. Pearcy, R. & Ustin, S. L. 1984. Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia 62: 68–73.Google Scholar
  31. Pennings, S. C. & Callaway, R. M. 1992. Salt marsh plant zonation – the relative importance of competition and physical factors. Ecology 73: 681–690.Google Scholar
  32. Pennings, S. C. & Callaway, R. M. 1996. Impact of a parasitic plant on the structure and dynamics of salt marsh vegetation. Ecology 77: 1410–1419.Google Scholar
  33. Pestrong, R. 1972. San Francisco Bay tidelands. California Geology 25: 27–40.Google Scholar
  34. Purer, E. 1942. Plant ecology of the coastal salt marshlands in San Diego County, California. Ecol. Monographs 12: 81–111.Google Scholar
  35. Redfield, A. C. 1972. Development of a New England salt marsh. Ecol. Monographs 42: 201–237.Google Scholar
  36. Sanderson, E. W., Zhang, M., Ustin, S. L. & Rejmankova, E. 1998. Geostatistical scaling of canopy water content in a California salt marsh. Landscape Ecol. 13: 79–92.Google Scholar
  37. Snow, A. A. & Vince, S. W. 1984. Plant zonation in an Alaskan salt marsh II. An experimental study of the role of edaphic conditions. J. Ecol. 72: 669–684.Google Scholar
  38. Strahler, A. 1964. Quantitative geomorphology of drainage basins and channel networks. Pp. 4–39–4–76. In: Chow, V. (ed.) Handbook of Applied Hydrology. McGraw-Hill Book Company, New York.Google Scholar
  39. Ustin, S. L., Pearcy, R.W. & Bayer, D. E. 1982. Plant water relations in a San Francisco Bay salt marsh. Bot. Gazette 143: 368–373.Google Scholar
  40. Valiela, I., Teal, J. M. & Deuser, W. G. 1978. The nature of growth forms in the salt marsh grass Spartina alterniflora. Am. Nat. 112: 461–470.Google Scholar
  41. Vogl, R. J. 1966. Salt-marsh vegetation of Upper Newport Bay, California. Ecology 47: 80–87.Google Scholar
  42. Wayne, L. B. & Parker, V. T. 1994. Regeneration ecology of a peripheral zone halophyte, Grindelia stricta var. angustifolia in a San Francisco Bay tidal salt marsh. Bull. Ecol. Soc. Am. Suppl. 75: 242–243.Google Scholar
  43. Wayne, L. & Parker, V. 1996. High rainfall and fungal pathogens in a San Francisco Bay salt marsh – a test of the importance of competition and salinity in determining zonation. Bull. Ecol. Soc. Am. Suppl. 77: 470.Google Scholar
  44. Whitlow, T. H. 1982. Plant-soil interactions in a San Francisco Bay salt marsh. Dissertation. University of California, Davis, CA.Google Scholar
  45. Wiegert, R. G., Chalmers, A. G. & Randerson, P. F. 1983. Productivity gradients in salt marshes: the response of Spartina alterniflora to experimentally manipulated soil water movement. Oikos 41: 1–6.Google Scholar
  46. Wolfe, R. J. 1996. Effects of open water management on selected tidal marsh resources: A review. J. Am. Mosquito Control Assoc. 12: 701–712.Google Scholar
  47. Zedler, J. B., Callaway, J. C., Desmond, J. S., Vivian-Smith, G., Williams, G. D., Sullivan, G., Brewster, A. E. & Bradshaw, B. K. 1999. Californian salt-marsh vegetation: an improved model of spatial pattern. Ecosystems 2: 19–35.Google Scholar
  48. Zhang, M., Ustin, S. L, Rejmankova, E. & Sanderson, E. W. 1997. Monitoring Pacific Coast salt marshes using remote sensing. Ecol. Appl. 7: 1039–1053.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Eric W. Sanderson
    • 1
  • Susan L. Ustin
    • 1
  • Theodore C. Foin
    • 2
  1. 1.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA
  2. 2.Division of Environmental StudiesUniversity of CaliforniaDavisUSA

Personalised recommendations