Skip to main content
Log in

Viscosity Coderivatives and Their Limiting Behavior in Smooth Banach Spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

This paper concerns with generalized differentiation of set-valued and nonsmooth mappings between Banach spaces. We study the so-called viscosity coderivatives of multifunctions and their limiting behavior under certain geometric assumptions on spaces in question related to the existence of smooth bump functions of any kind. The main results include various calculus rules for viscosity coderivatives and their topological limits. They are important in applications to variational analysis and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin, J.-P.: Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, in: L. Nachbin, (ed.), Mathematical Analysis and Applications, Academic Press, Boston, 1981, pp. 159–229.

    Google Scholar 

  2. Aubin, J.-P. and Frankowska, H.: Set-Valued Analysis, Birkhäuser, Boston, 1990.

    Google Scholar 

  3. Borwein, J. M. and Fitzpatrick, S.: Weak* sequential compactness and bornological limit derivatives, J. Convex Anal. 2 (1995), 59–68.

    Google Scholar 

  4. Borwein, J. M. and Ioffe, A. D.: Proximal analysis in smooth spaces, Set-Valued Anal. 4 (1996), 1–24.

    Google Scholar 

  5. Borwein, J. M., Mordukhovich, B. S. and Shao, Y.: On the equivalence of some basic principles in variational analysis, J. Math. Anal. Appl. 229 (1999), 228–257.

    Google Scholar 

  6. Borwein, J. M. and Preiss, D.: A smooth variational principle with applications to subdifferentiability and differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), 17–527.

    Google Scholar 

  7. Borwein, J. M. and Strojwas, H. M.: Tangential approximations, Nonlinear Anal. 9 (1985), 347–1366.

    Google Scholar 

  8. Borwein, J. M., Treiman, J. S. and Zhu, Q. J.: Necessary conditions for constrained optimization problems with semicontinuous and continuous data, Trans. Amer. Math. Soc. 350 (1998), 2409–429.

    Google Scholar 

  9. Borwein, J. M. and Zhu, Q. J.: Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity, SIAM J. Control Optim. 34 (1996), 568–1591.

    Google Scholar 

  10. Borwein, J. M. and Zhu, Q. J.: Limiting convex examples for nonconvex subdifferential calculus, J. Convex Anal., to appear.

  11. Borwein, J. M. and Zhu, Q. J.: A survey of subdifferential calculus with applications, Nonlinear Anal., to appear.

  12. Deville, R., Godefroy, G. and Zizler, V.: A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993), 197–212.

    Article  Google Scholar 

  13. Deville, R., Godefroy, G. and Zizler, V.: Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surv. Pure Appl. Math. 64, Longman, 1993.

  14. Deville, R. and Ivanov, M.: Smooth variational principles with constraints, Arch. Math., 69 (1997), 418–426.

    Google Scholar 

  15. Fabian, M. and Mordukhovich, B. S.: Nonsmooth characterizations of Asplund spaces and smooth variational principles, Set-Valued Anal. 7 (1999).

  16. Ioffe, A. D.: Approximate subdifferentials and applications. II: Functions on local convex spaces, Mathematika 33 (1986), 111–128.

    Google Scholar 

  17. Ioffe, A. D.: Approximate subdifferential and applications. III: The metric theory, Mathematika 6 (1989), 1–38.

    Google Scholar 

  18. Ioffe, A. D.: Codirectional compactness, metric regularity and subdifferential calculus, J. Funct. Anal., to appear.

  19. Ioffe, A. D. and Penot, J.-P.: Subdifferentials of performance functions and calculus of coderivatives of set-valued mappings, Serdica Math. J. 22 (1996), 257–282.

    Google Scholar 

  20. Jourani, A.: Compactly epi-Lipschitzian sets and A-subdifferentials in WT-spaces, Optimization 4 (1995), 1–17.

    Google Scholar 

  21. Jourani, A. and Thibault, L.: Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces, Trans. Amer. Math. Soc. 347 (1995), 1255–1268.

    Google Scholar 

  22. Jourani, A. and Thibault, L.: Extensions of subdifferential calculus rules in Banach spaces, Can. J. Math. 48 (1996), 834-848.

    Google Scholar 

  23. Jourani, A. and Thibault, L.: Chain rules for coderivatives of multivalued mappings in Banach spaces, Proc. Amer. Math. Soc. 126 (1998), 1479–1485.

    Google Scholar 

  24. Jourani, A. and Thibault, L.: Qualification conditions for calculus rules of coderivatives of multivalued mappings, J. Math. Anal. Appl. 218 (1998), 66–81.

    Google Scholar 

  25. Jourani, A. and Thibault, L.: Coderivatives of multivalued mappings, locally compact cones and metric regularity, Nonlinear Anal. 35 (1999), 925–945.

    Google Scholar 

  26. Kruger, A. Y. and Mordukhovich, B. S.: Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24 (1980), 684–687.

    Google Scholar 

  27. Loewen, P. D.: Limits of Fréchet normals in nonsmooth analysis, in A. Ioffe, et al. (eds), Optimization and Nonlinear Analysis, Pitman Res. Notes Math. Ser. 244, Longman, Harbor, 1992, pp. 178–188.

    Google Scholar 

  28. Mordukhovich, B. S.: Maximum principle in problems of time optimal control with nonsmooth constraints, J. Appl. Math. Mech. 40 (1976), 960–969.

    Google Scholar 

  29. Mordukhovich, B. S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Soviet Math. Dokl. 22 (1980), 526–530.

    Google Scholar 

  30. Mordukhovich, B. S.: Approximation Methods in Problems of Optimization and Control, Nauka, Moscow, 1988; 2nd edition to appear in Wiley-Interscience.

    Google Scholar 

  31. Mordukhovich, B. S.: Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl. 183 (1994), 250–288.

    Google Scholar 

  32. Mordukhovich, B. S.: Coderivatives of set-valued mappings: calculus and applications, Nonlinear nal. 30 (1997), 3059–3070.

    Google Scholar 

  33. Mordukhovich, B. S. and Shao, Y.: Differential characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions between Banach spaces, Nonlinear Anal. 25 (1995), 1401-1424.

    Google Scholar 

  34. Mordukhovich, B. S. and Shao, Y.: Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348 (1996), 1235–1280.

    Google Scholar 

  35. Mordukhovich, B. S. and Shao, Y.: Nonconvex differential calculus for infinite dimensional multifunctions, Set-Valued Anal. 4 (1996), 205–236.

    Google Scholar 

  36. Mordukhovich, B. S. and Shao, Y.: Stability of set-valued mappings in in infinite dimensions: point criteria and applications, SIAM J. Control Optim. 35 (1997), 285–314.

    Google Scholar 

  37. Mordukhovich, B. S. and Shao, Y.: Fuzzy calculus for coderivatives of multifunctions, Nonlinear Anal. 29 (1997), 605–626.

    Google Scholar 

  38. Mordukhovich, B. S. and Shao, Y.: Mixed coderivatives of set-valued mappings in variational analysis, J. Appl. Anal. 4 (1998), 269-294.

    Google Scholar 

  39. Penot, J.-P.: Compactness properties, openness criteria and coderivatives, Set-Valued Anal. 6 (1998), 363–380.

    Google Scholar 

  40. Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability, 2nd edition, Lecture Notes in Mathematics, vol. 1364, Springer, 1993.

  41. Rockafellar, R. T.: Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39 (1979), 331–355.

    Google Scholar 

  42. Rockafellar, R. T. and Wets, R. J.-B.: Variational Analysis, Springer, Berlin, 1998.

    Google Scholar 

  43. Vanderwerff, J. and Zhu, Q. J.: A limiting example for the local “fuzzy” sum rule in nonsmooth analysis, Proc. Amer. Math. Soc. 126 (1998), 2691–2697.

    Google Scholar 

  44. Zhu, Q. J.: Calculus rules for subderivatives in smooth Banach spaces, preprint (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mordukhovich, B.S., Shao, Y. & Zhu, Q. Viscosity Coderivatives and Their Limiting Behavior in Smooth Banach Spaces. Positivity 4, 1–39 (2000). https://doi.org/10.1023/A:1009881924265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009881924265

Navigation