Skip to main content
Log in

On the Davey–Stewartson and Ishimori Systems

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the initial value problem for the two-dimensional nonlinear nonlocal Schrödinger equations i ut + Δ u = N(v), (t, x, y) ∈ R3, u(0, x, y) = u0(x, y), (x, y) ∈ R2 (A), where the Laplacian Δ = ∂2 x + ∂2 y, the solution u is a complex valued function, the nonlinear term N = N1 + N2 consists of the local nonlinear part N1(v) which is cubic with respect to the vector v=(u,ux,uy,\overline{u},\overline{u}_{x},\overline{u}_{y}) in the neighborhood of the origin, and the nonlocal nonlinear part N2(v) =(v, ∂ − 1 x Kx(v)) + (v, ∂− 1 y Ky(v)), where (⋅, ⋅) denotes the inner product, \(\partial _x^{ - 1} = \int_{ - \infty }^x {{\text{d}}x',} \partial _y^{ - 1} = \int_{ - \infty }^x {{\text{d}}x',} \) and the vectors Kx ∈(C4(C6; C))6 and Ky ∈(C4(C6; C))6 are quadratic with respect to the vector v in the neighborhood of the origin. We assume that the components K(2) x = K(4) x ≡ 0, K(3) y = K(6) y ≡ 0. In particular, Equation (A) includes two physical examples appearing in fluid dynamics. The elliptic–hyperbolic Davey–Stewartson system can be reduced to Equation (A) with \(\mathcal{N}_1 = \left| u \right|^2 u,\mathcal{K}_x^{\left( 1 \right)} = \partial _y \left( {\left| u \right|^2 } \right),\mathcal{K}_y^{\left( 1 \right)} = \partial _x \left( {\left| u \right|^2 } \right)\), and all the rest components of the vectors Kx and Ky are equal to zero. The elliptic–hyperbolic Ishimori system is involved in Equation (A), when \(\mathcal{N}_1 = \left( {1 + \left| u \right|^2 } \right)^{ - 1} \bar u\left({\nabla u} \right)^2 \), and \(\mathcal{K}_y^{\left( 3 \right)} = - \mathcal{K}_y^{\left( 2 \right)} \left( {1 + \left| \right|^2 } \right)^{ - 2} \left( {u_x \bar u_y - \bar u_x u_y } \right)\). Our purpose in this paper is to prove the local existence in time of small solutions to the Cauchy problem (A) in the usual Sobolev space, and the global-in-time existence of small solutions to the Cauchy problem (A) in the weighted Sobolev space under some conditions on the complex conjugate structure of the nonlinear terms, namely if N(ei θ v) = ei θ N(v) for all θ ∈ R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, J. M. and Haberman, R.: Nonlinear evolution equations in two and three dimensions, Phys. Rev. Lett. 35 (1975), 1185–1188.

    Google Scholar 

  2. Ablowitz, J. M. and Fokas, A. S.: On the inverse scattering transform of multidimensional nonlinear equations, J. Math. Phys. 25 (1984), 2494–2505.

    Google Scholar 

  3. Ablowitz, J. M. and Segur, A.: Solitons and Inverse Scattering Transform, PA, SIAM, 1981.

  4. Anker, D. and Freeman, N. C.: On the soliton solutions of the Davey–Stewartson equation for long waves, Proc. R. Soc. A 360 (1978), 529–540.

    Google Scholar 

  5. Bardos, C., Sulem, C. and Sulem, P. L.: On the continuous limit for a system of classical spins, Comm. Math. Phys. 107 (1986), 431–454.

    Google Scholar 

  6. Benney, D. J. and Roskes, G. L.: Wave instabilities, Stud. Appl. Math. 48 (1969), 377–385.

    Google Scholar 

  7. Beals, R. and Coifman, R. R.: The spectral problem for the Davey–Stewartson and Ishimori hierarchies, Proc. Conf. on Nonlinear Evolution Equations: Integrability and Spectral Methods, Manchester, U.K., 1988.

  8. Chihara, H.: The initial value problem for the elliptic–hyperbolic Davey–Stewartson equation, Preprint, 1995.

  9. Constantin, P.: Decay estimates of Schrödinger equations, Comm. Math. Phys. 127 (1990), 101–108.

    Google Scholar 

  10. Cornille, H.: Solutions of the generalized nonlinear Schrödinger equation in two spatial dimensions, J. Math. Phys. 20 (1979), 199–209.

    Google Scholar 

  11. Davey, A. and Stewartson, K.: On three-dimensional packets of surface waves, Proc. R. Soc. A 338 (1974), 101–110.

    Google Scholar 

  12. Djordjevic, V. D. and Redekopp, L. G.: On two-dimensional packets of capillary-gravity waves, J. Fluid Mech. 79 (1977), 703–714.

    Google Scholar 

  13. Doi, S.: On the Cauchy problem Schrödinger type equations and regularity of solutions, J. Math. Kyoto Univ. 34 (1994), 319–328.

    Google Scholar 

  14. Fokas, A. S. and Santini, P. M.: Recursion operators and bi-Hamiltonian structures in multidimensions. I, II, Comm. Math. Phys. 115 (1988), 375–419, 449–474.

    Google Scholar 

  15. Fokas, A. S. and Sung, L. Y.: On the solvability of the N-wave, Davey–Stewartson and Kadomtsev–Petviashvili equations, Inverse Problems 8 (1992), 673–708.

    Google Scholar 

  16. Ghidaglia, J.M. and Saut, J. C.: On the initial value problem for the Davey–Stewartson systems, Nonlinearity 3 (1990), 475–506.

    Google Scholar 

  17. Hayashi, N.: Local existence in time of small solutions to the Davey–Stewartson system, Annales de l'I.H.P. Physique Theorique 65 (1996), 313–366.

    Google Scholar 

  18. Hayashi, N.: On the initial value problem for the Davey–Stewartson and the Ishimori systems, in The Proceedings of the 4th MSJ International Reserch Institute on “Nonlinear Waves”, Sapporo, July 10–21, 1995, GAKUTO International Series, Mathematical Sciences and Applications, Gakkotosho, vol. 10, 1997, pp. 145–154.

  19. Hayashi, N.: Local existence in time of solutions to the elliptic–hyperbolic Davey–Stewartson system without smallness condition on the data, J. Analysé Mathématique 73 (1997), 133–164.

    Google Scholar 

  20. Hayashi, N.: Local existence in time of small solutions to the Ishimori system, Diff. Integral Eqs., to appear.

  21. Hayashi, N. and Hirata, H.: Global existence and asymptotic behavior in time of small solutions to the elliptic–hyperbolic Davey–Stewartson system, Nonlinearity 9 (1996), 1387–1409.

    Google Scholar 

  22. Hayashi, N. and Hirata, H.: Local existence in time of small solutions to the elliptic–hyperbolic Davey–Stewartson system in the usual Sobolev space, Proceedings of the Edinburgh Mathematical Society 40 (1997), 563–581.

    Google Scholar 

  23. Hayashi, N. and Naumkin, P. I.: Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited, Discrete and Continuous Dynamical Systems 3 (1997), 383–400.

    Google Scholar 

  24. Hayashi, N. and Saut, J. C.: Global existence of small solutions to the Davey–Stewartson and the Ishimori systems, Diff. Integral Eqs. 8 (1995), 1657–1675.

    Google Scholar 

  25. Hayashi, N. and Saut, J. C.: Global existence of small solutions to the Ishimori system without exponential decay of the data, Diff. Integral Eqs. 9 (1996), 1183–1195.

    Google Scholar 

  26. Ishimori, Y.: Multi vortex solutions of a two dimensional nonlinear wave equation, Progr. Theor. Phys. 72 (1984), 33–37.

    Google Scholar 

  27. Kato, T.: On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Appl. Math. 8 (1983), 93–128.

    Google Scholar 

  28. Kenig, C. E., Ponce, G. and Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620.

    Google Scholar 

  29. Konopelchenko, B. G. and Matkarimov, B. T.: Inverse spectral transform for the nonlinear evolution equation generating the Davey–Stewartson and Ishimori equations, Stud. Appl. Math. 82 (1990), 319–359.

    Google Scholar 

  30. Linares, F. and Ponce, G.: On the Davey–Stewartson systems, Ann. Inst. Henri Poincaré, Anal. non linéaire 10 (1993), 523–548.

    Google Scholar 

  31. Soyeur, A.: The Cauchy problem for the Ishimori equations, J. Funct. Anal. 105 (1992), 233–255.

    Google Scholar 

  32. Stein, E. M.: Singular Integral and Differentiability Properties of Functions, Princeton Univ. Press, Princeton Math. Series 30, 1970.

  33. Sung, L. Y.: An inverse-scattering transform for the Davey–Stewartson II equations, Part III, J. Math. Anal. Appl. 183 (1994), 477–494.

    Google Scholar 

  34. Sung, L. Y.: The Cauchy problem for the Ishimori equation, Preprint, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, N., Naumkin, P.I. On the Davey–Stewartson and Ishimori Systems. Mathematical Physics, Analysis and Geometry 2, 53–81 (1999). https://doi.org/10.1023/A:1009875019021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009875019021

Navigation