Skip to main content
Log in

Oxidative Stress and Ventricular Dysfunction in Ischemic Heart Disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Ventricular dysfunction due to myocardial infarction is a result of a pathophysiological “continuum”, proceeding from a fully reversible alteration to the irreversible loss of myocardial tissue. Various studies have suggested that oxidative stress induced by acute ischemia may play a role for the progression of ventricular dysfunction to heart failure.

Oxidative injury on the myocardium may be described as the result of two processes; a) a deficit of the endogenous anti-oxidant defence during ischemia, and b) a production of oxygen free radicals occurring during early reperfusion. Ventricular dysfunction may result from a direct action of oxygen free radicals on ion translocating proteins, particularly vulnerable to radical-induced oxidation at key sulfhydryl groups, and an indirect calcium-induced activation of proteases, leading to excitation-contraction uncoupling.

A progressive increase in oxygen free radical injury and involvement of oxidative stress have been observed in the evolution of ventricular dysfunction, suggesting that oxidative stress may be an important determinant factor for prognosis. The specific role of oxidative stress in the progression of ischemia to failure is yet to be entirely defined; however, new therapeutic approaches may possible influence the course of this progression by counteracting the oxidative injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh N, Dhalla AK, Seneviratne C, Singal PK. Oxidative stress and heart failure. Mol Cell Biochem 1995;147:77–81.

    Google Scholar 

  2. Hill MF, Singal PK. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 1996;148:291–300.

    Google Scholar 

  3. Díaz-Vélez CR, García-Castiñeiras S, Mendoza-Ramos E, Hernández-López E. Increased malondialdehyde in peripheral blood of patients with congestive heart failure. Am Heart J 1996;131:146–152.

    Google Scholar 

  4. Hearse DJ. Stunning: A radical re-view. Cardiovasc Drugs Ther 1991;5:853–876.

    Google Scholar 

  5. Ferrari R. The role of free radicals in ischaemic myocardium. Br J Clin Prac 1990;44:301–305.

    Google Scholar 

  6. Curello S, Ceconi C, Cargnoni A, Medici D, Ferrari R. Oxidative stress during myocardial ischaemia and reperfusion: experimental and clinical evidences. J Appl Cardiol 1986;1:311–327.

    Google Scholar 

  7. Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Albertini A, Visioli O. Oxygen-mediated myocardial damage during ischaemia and reperfusion: Role of the cellular defences against oxygen toxicity. J Mol Cell Cardiol 1985;17:937–945.

    Google Scholar 

  8. Ferrari R, Curello S, Ceconi C, Cargnoni A, Condorelli E, Albertini A. Alterations of glutathione status during myocardial ischaemia and reperfusion. In: Singal PK, ed. Oxygen Radicals in the Pathophysiology of Heart Disease.Boston: Kluwer Academic Publishers, 1988;145–160.

    Google Scholar 

  9. Rowe GT, Manson NH, Caplan M, Hess ML. Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of the cyclooxygenase pathway. Circ Res 1983;53:584–591.

    Google Scholar 

  10. Okabe E, Hess ML, Oyama M, Ito H. Characterization of free radical-mediated damage of canine cardiac sarcoplasmic reticulum. Arch Biochem Biophys 1983;225:164–177.

    Google Scholar 

  11. Hess ML, Okabe E, Ash P, Kontos HA. Free radical mediation of the effects of acidosis on calcium transport by cardiac sarcoplasmic reticulum in whole heart homogenates. Cardiovasc Res 1984;18:149–157.

    Google Scholar 

  12. Holmberg SRM, Cumming DVE, Kusama Y, Hearse DJ, Poole-Wilson PA, Shattock MJ, Williams AJ. Reactive oxygen species modify the structure and function of the cardiac sarcoplasmic reticulum calcium-release channel. Cardioscience 1991;2:19–25.

    Google Scholar 

  13. Boraso A, Williams AJ. Modification of the gating of the cardiac sarcoplasmic reticulum Ca2+-release channel by H2O2 and dithiothreitol. Am J Physiol 1994;267: H1010–H1016.

    Google Scholar 

  14. Hearse DJ. Free radical and myocardial injury during ischaemia and reperfusion: A short-lived phenomenon? In: Rosen M, Palti Y, eds. Lethal Arrhythmias Resulting from Myocardial Ischaemia and Infarction. Boston: Kluwer Academic Press, 1988;105–115.

    Google Scholar 

  15. Hearse DJ. Free radicals, membrane injury, and electrophysiological disorders. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology from Cell to Bedside. Philadelphia: WB Saunders, 1990;442–447.

    Google Scholar 

  16. Tarr MT, Valenzeno DP.Modification of cardiac action potential by photosensitizer-generated reactive oxygen. J Mol Cell Cardiol 1989;21:539–543.

    Google Scholar 

  17. Pallandi RT, Perry MA, Campbell TJ. Proarrhythmic effects of an oxygen-derived free radical generating system on action potentials recorded from guinea pig ventricular myocardium: A possible cause of reperfusion-induced arrhythmias. Circ Res 1987;61:50–54.

    Google Scholar 

  18. Cerbai E, Ambrosio G, Porciatti F, Chiariello M, Giotti A, Mugelli A. Cellular electrophysiological basis for oxygen radical-induced arrhythmias. A patch-clamp study in guinea pig ventricular myocytes. Circulation 1991;84:1773–1782.

    Google Scholar 

  19. Barrington PL, Meier CF Jr, Weglicki WB. Abnormal electrical activity induced by free radical generating systems in isolated cardiocytes. J Mol Cell Cardiol 1988;20:1163–1178.

    Google Scholar 

  20. Simpson PJ, Mickelson JK, Lucchesi BR. Free radical scavengers in myocardial ischemia. Fed Proc 1987;46:2413–2421.

    Google Scholar 

  21. Bolli R, McCay PB. Use of spin traps in intact animals undergoing myocardial ischemia/reperfusion: A new approach to assessing the role of oxygen radicals in myocardial “stunning”. Free Radic Res Commun 1990;9:169–180.

    Google Scholar 

  22. Garlick PB, Davies MJ, Hearse DJ, Slater TF. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 1987;61:757–760.

    Google Scholar 

  23. Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R, McCay PB. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 1989;86: 4695–4699.

    Google Scholar 

  24. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest 1988;82:476–485.

    Google Scholar 

  25. Bolli R, Jeroudi MO, Patel BS, Arouma OI, Halliwell B, Lai EK, McCay PB. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 1989;65:607–622.

    Google Scholar 

  26. Bolli R, Patel BS, Jeroudi MO, Li XY, Triana JF, Lai EK, McCay PB. Iron-mediated radical reactions upon reperfusion contribute to myocardial “stunning”. Am J Physiol 1990;259:H1901–H1911.

    Google Scholar 

  27. MacFarlane NG, Miller DJ. Depression of peak force without altering calcium sensitivity by the superoxide anion in chemically skinned cardiac muscle of rat. Circ Res 1992;70:1217–1224.

    Google Scholar 

  28. MacFarlane NG, Miller DJ, Smith GL, Steele DS. Effects of oxidants on the sarcoplasmic reticulum of saponin treated rat ventricular trabeculae. Cardiovasc Res 1994;28: 1647–1652.

    Google Scholar 

  29. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 1997;80:393–399.

    Google Scholar 

  30. Marban E. Pathogenic role for calcium in stunning?. Cardiovasc Drugs Ther 1991;5:891–893.

    Google Scholar 

  31. Carrozza JP Jr, Bentivegna LA, Williams CP, Kuntz RE, Grossman W, Morgan JP. Decreased myo~lament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 1992;72:1334–1340.

    Google Scholar 

  32. Gao WD, Atar D, Backx PH, Marban E. Relationship between intracellular calcium and contractile force in stunned myocardium. Direct evidence for decreased myo~lament Ca2+ responsiveness and altered diastolic function in intact ventricular muscle. Circ Res 1995;76:1036–1048.

    Google Scholar 

  33. Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E. Excitation-contraction coupling in postischemic myocardium. Does failure of activator Ca2+ transients underlie stunning? Circ Res 1990;66:1268–1276.

    Google Scholar 

  34. Bolli R. Oxygen-derived free radicals and myocardial reperfusion injury: An overview. Cardiovasc Drugs Ther 1991;5:249–268.

    Google Scholar 

  35. Bolli R. Mechanism of myocardial “stunning”. Circulation 1990;82:723–738.

    Google Scholar 

  36. Kitakaze M, Weisfeldt ML, Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 1988;82:920–927.

    Google Scholar 

  37. Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 1985;17:1029–1042.

    Google Scholar 

  38. Shattock MJ. Do we know the mechanism of myocardial stunning? Basis Res Cardiol 1998;93:145–149.

    Google Scholar 

  39. Renlund DG, Gerstenblith G, Lakatta EG, Jacobus WE, Kallman CH, Weisfeldt ML. Perfusate sodium during ischemia modi~es post-ischemic functional and metabolic recovery in the rabbit heart. J Mol Cell Cardiol 1984;16:795–801.

    Google Scholar 

  40. Shattock MJ, Matsuura H. Measurement of Na+-K+ pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique. Inhibition of the pump by oxidant stress. Circ Res 1993;72:91–101.

    Google Scholar 

  41. Tani M, Neely JR. Role of intracellular Na1 in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res 1989;65:1045–1056.

    Google Scholar 

  42. Engler RL, Dahlgren MD, Morris DD, Peterson MA, Schmid-Schonbein GW. Role of leukocytes in response to acute myocardial ischemia and reflow in dogs. Am J Physiol 1986;251:H314–H323.

    Google Scholar 

  43. Kusuoka H, Porterfield JK, Wiesman HF, Weisfeldt ML, Marban E. Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 1987;79:950–961.

    Google Scholar 

  44. Marban E, Koretsune Y, Corretti M, Chacko VP, Kusuoka H. Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation 1989;80:IV17–IV22.

    Google Scholar 

  45. Krause SM, Jacobus WE, Becker LC. Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic “stunned” myocardium. Circ Res 1989;65:526–530.

    Google Scholar 

  46. Nayler WJ, Buckley DJ, Leong J. Calcium antagonists and the “stunned” myocardium. Cardioscience 1990;1:61–64.

    Google Scholar 

  47. Limbruno U, Zucchi R, Ronca-Testoni S, Galbani P, Ronca G, Mariani M. Sarcoplasmic reticulum function in the “stunned” myocardium. JMol Cell Cardiol 1989;21: 1063–1072.

    Google Scholar 

  48. Hess ML, Manson NH. Molecular oxygen: Friend or foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox, and ischemia/reperfusion injury. J Mol Cell Cardiol 1984;16:969–985.

    Google Scholar 

  49. Hearse DJ, Bolli R. Reperfusion induced injury: Manifestations, mechanisms, and clinical relevance. Cardiovasc Res 1992;26:101–108.

    Google Scholar 

  50. Ferrari R, Curello S, Cargnoni A, Condorelli E, Comini L, Ghielmi S, Ceconi C. Importance of free radicals generated by endothelial and myocardial cells in ischemia and reperfusion. In: Piper HM, ed. Pathophysiology of Severe Ischemic Myocardial Injury. Dordrecht: Kluwer Academic Publishers. 1990;221–238.

    Google Scholar 

  51. Patel B, Kloner RA. Analysis of reported randomized trials of streptokinase therapy for acute myocardial infarction in the 1980s. Am J Cardiol 1987;59:501–504.

    Google Scholar 

  52. TIMI Study Group. The thrombolysis in myocardial infarction (TIMI) trial: Phase 1 findings. N Engl J Med 1985;312:932–936.

    Google Scholar 

  53. Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986;22:397–401.

    Google Scholar 

  54. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977;56:786–794.

    Google Scholar 

  55. Ellis SG, Wynne J, Braunwald E, Henschke CI, Sandor T, Kloner RA. Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 1984;107:13–19.

    Google Scholar 

  56. Markis JE, Malagold M, Parker JA, Silverman KJ, Barry WH, Als AV, Paulin S, Grossman W, Braunwald E. Myocardial salvage after intracoronary thrombolysis with streptokinase in acute myocardial infarction. N Engl J Med 1981;305:777–782.

    Google Scholar 

  57. Tenant R, Wiggers CJ. The effect of coronary occlusion on myocardial contraction. Am J Physiol 1985;112:351–361.

    Google Scholar 

  58. Ferrari R, Ceconi C, Curello S, Cargnoni A, Condorelli E, Belloli S, Albertini A, Visioli O. Metabolic changes during post-ischaemic reperfusion. J Mol Cell Cardiol 1988;20:119–133.

    Google Scholar 

  59. Ferrari R, Niccoli L, Visioli O, Harris P. Myocardial metabolism during intracoronary thrombolysis. Two illustrative cases. Int J Cardiol 1987;15:293–299.

    Google Scholar 

  60. Valente M, Klugman S, Niccoli L, Ferrari R, Terrosu P, Camerini F, Ibba GV, Visioli O, Bellandi M, Contini GM, Ettori F, Franceschino V, Leonzi O, Salvi A. Importance of early recanalization of the occluded coronary artery in acute myocardial infarction for preservation of left ventricular function. J Mol Cell Cardiol 1988;20:145–154.

    Google Scholar 

  61. Jennings RB, Reimer KA. Lethal myocardial ischemic injury. Am J Pathol 1981;102:241–255.

    Google Scholar 

  62. Hearse DJ. Reperfusion of the ischemic myocardium. J Mol Cell Cardiol 1977;9:605–616.

    Google Scholar 

  63. Dhalla AK, Singal PK. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Physiol 1994;266:H1280–H1285.

    Google Scholar 

  64. Hill MF, Singal PK. Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 1997;96:2414–2420.

    Google Scholar 

  65. Khaper N, Singal PK. Effects of afterload-reducing drugs on pathogenesis of antioxidant changes and congestive heart failure in rats. J Am Coll Cardiol 1997;29:856–861.

    Google Scholar 

  66. Kirshenbaum LA, Singal PK. Antioxidant changes in heart hypertrophy: Signi~cance during hypoxia-reoxygenation injury. Can J Physiol Pharmacol 1992;70:1330–1335.

    Google Scholar 

  67. Prasad K, Gupta JB, Kalra J, Lee P, Mantha SV, Bharadwaj B. Oxidative stress as a mechanism of cardiac failure in chronic volume overload in canine model. JMol Cell Cardiol 1996;28:375–385.

    Google Scholar 

  68. Curello S, Ceconi C, Cargnoni A, Cornacchiari A, Ferrari R, Albertini A. Improved procedure for determining glutathione in plasma as an index of myocardial oxidative stress. Clin Chem 1987;33:1448–1449.

    Google Scholar 

  69. Adams JD, Lauterburg BH, Mitchell JR. Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther 1983;227:749–754.

    Google Scholar 

  70. Ferrari R, Ceconi C, Curello S, Cargnoni A, Albertini A, Visioli O. Molecular events occurring during post-ischaemic reperfusion. In: Dhalla NS, Innes IR, Beamish RE, eds. Myocardial Ischaemia. Boston Martinus Nijhoff Publishing, 1987;67–84.

  71. Ferrari R, Ceconi C, Curello S, Cargnoni A, Agnoletti G, Boffa GM, Visioli O. Intracellular effects of myocardial ischaemia and reperfusion: Role of calcium and oxygen. Eur Heart J 1986;7:3–12.

    Google Scholar 

  72. Ferrari R, Ceconi C, Curello S, Cargnoni A, Albertini A, Visioli O. Oxygen utilization and toxicity at myocardial level. In: Benzi G, Packer L, Siliprandi N, eds. Biochemical Aspects of Physical Exercise. Amsterdam: Elsevier Science Publisher BV, 1986;145–156.

    Google Scholar 

  73. Curello S, Ceconi C, Cargnoni A, Medici D, Condorelli E, Ferrari R. Evidence of myocardial oxidative stress in human during ischaemia and reperfusion. In: Benzi G, ed. Advances in Myochemistry: 1. London: Libbey Eurotext Ltd, 1987;365–367.

    Google Scholar 

  74. Ferrari R, Ceconi C, Curello S, Cargnoni A, Medici D. Oxygen-free radicals and reperfusion injury: The effect of ischaemia and reperfusion on the cellular ability to neutralise oxygen toxicity. J Mol Cell Cardiol 1986;18:67–69.

    Google Scholar 

  75. Cargnoni A, Ceconi C, Bernocchi P, Parrinello G, Benigno M, Boraso A, Curello S, Ferrari R. Changes in oxidative stress and cellular redox potential during myocardial storage for transplantation: Experimental studies. J Heart Lung Transpl 1999;18:478–487.

    Google Scholar 

  76. Scragg R, Jackson R, Holdaway I, Woollard G, Woollard D. Changes in plasma vitamin levels in the ~rst 48 hours after onset of acute myocardial infarction. Am J Cardiol 1989;64:971–974.

    Google Scholar 

  77. Street DA, Comstock GW, Salkeld RM, Schuep W, Klag MJ. Serum antioxidants and myocardial infarction. Are low levels of carotenoids and alpha-tocopherol risk factors for myocardial infarction? Circulation 1994;90:1154–1161.

    Google Scholar 

  78. Manning AS, Hearse DJ. Reperfusion-induced arrhythmias: Mechanisms and prevention. J Mol Cell Cardiol 1984;16:497–518.

    Google Scholar 

  79. Woodward B, Zakaria MN. Effects of some free radical scavengers on reperfusion-induced arrhythmias in the isolated rat heart. J Mol Cell Cardiol 1985;17:485–493.

    Google Scholar 

  80. Yamada M, Hearse DJ, Curtis MJ. Reperfusion and readmission of oxygen. Pathophysiological relevance of oxygen-derived free radicals to arrhythmogenesis. Circ Res 1990;67:1211–1224.

    Google Scholar 

  81. Bernier M, Hearse DJ, Manning AS. Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with “anti-free-radical” interventions and a free radical-generating system in the isolated perfused rat heart. Circ Res 1986;58:331–340.

    Google Scholar 

  82. Hearse DJ, Tosaki A. Free radicals and reperfusion-induced arrhythmias: Protection by spin trap agent PBN in the rat heart. Circ Res 1987;60:375–383.

    Google Scholar 

  83. Hearse DJ, Tosaki A. Reperfusion-induced arrhythmias and free radicals: Studies in the rat heart with DMPO. J Cardiovasc Pharmacol 1987;9:641–650.

    Google Scholar 

  84. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 1987;84:1404–1407.

    Google Scholar 

  85. Ferrari R, Albertini A, Curello S, Ceconi C, Di Lisa F, Raddino R, Visioli O. Myocardial recovery during post-ischaemic reperfusion: Effects of nifedipine, calcium and magnesium. J Mol Cell Cardiol 1986;18:487–498.

    Google Scholar 

  86. Ferrari R, Williams AJ. The role of mitochondria in myocardial damage occurring on post-ischemic reperfusion. J Appl Cardiol 1986;1:501–519.

    Google Scholar 

  87. Freeman BA, Crapo JD. Biology of disease: Free radicals and tissue injury. Lab Invest 1982;47:412–426.

    Google Scholar 

  88. McCord JM. Free radicals and myocardial ischemia: Overview and outlook. Free Radic Biol Med 1988;4:9–14.

    Google Scholar 

  89. Saugstad OD, Aasen AO. Plasma hypoxanthine concentrations in pigs. A prognostic aid in hypoxia. Eur Surg Res 1980;12:123–129.

    Google Scholar 

  90. DeWall RA, Vasko KA, Stanley EL, Kezdi P. Responses of the ischemic myocardium to allopurinol. Am Heart J 1971;82:362–370.

    Google Scholar 

  91. Jones CE, Crowell JW, Smith EE. Significance of increased blood uric acid following extensive hemorrhage. Am J Physiol 1968;214:1374–1377.

    Google Scholar 

  92. Coker SJ, Parratt JR, Ledingham IM, Zeitlin IJ. Thromboxane and prostacyclin release from ischaemic myocardium in relation to arrhythmias. Nature 1981;291:323–324.

    Google Scholar 

  93. Das UN. Prostaglandins and cardiac arrhythmias. Med J Aust 1981;2:157–158.

    Google Scholar 

  94. Hsueh W, Isakson PC, Needleman P. Homone selective lipase activation in the isolated rabbit heart. Prostaglandins 1977;13:1073–1091.

    Google Scholar 

  95. Demopoulos HB, Flamm ES, Pietronigro DD, Selingman ML. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand 1980;492:91–119.

    Google Scholar 

  96. Hammond B, Kontos HA, Hess ML. Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage. Can J Physiol Pharmacol 1985;63:173–187.

    Google Scholar 

  97. Blackwell GJ, Flower RJ. Inhibition of phospholipase. Br Med Bull 1983;39:260–264.

    Google Scholar 

  98. Wolf RA, Gross RW. Identification of a neutral phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J Biol Chem 1985;260:7295–7303.

    Google Scholar 

  99. Kagan VE, Savov VM, Didenko VV, Arkhipenko YuV, Meerson FZ. Calcium and lipid peroxidation in the heart mitochondrial and microsomal membranes. Bull Exp Biol Med 1983;95:46–48.

    Google Scholar 

  100. Ferrari R, Alfieri O, Curello S, Ceconi C, Cargnoni A, Marzollo P, Pardini A, Caradonna E, Visioli O. Occurrence of oxidative stress during reperfusion of the human heart. Circulation 1990;81:201–211.

    Google Scholar 

  101. Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O. Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J 1998;19:B2–B11.

    Google Scholar 

  102. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 1984;54:277–285.

    Google Scholar 

  103. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 1985;72:915–921.

    Google Scholar 

  104. Gross GJ, Farber NE, Hardman HF, Warltier DC. Beneficial action of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 1986;250:H372–H377.

    Google Scholar 

  105. Ferrari R, Curello S, Boffa GM, Condorelli E, Pasini E, Guarnieri G, Albertini A. Oxygen free radical-mediated heart injury in animal models and during bypass surgery in humans. Effects of a-tocopherol. In: Diplock AT, Machlin LJ, Packer L, Pryor WA, eds. Vitamin E: Biochemistry and Health Implications. Ann NY Acad Sci 1990;570:237–253.

  106. Galiñanes M, Ferrari R, Qiu Y, Cargnoni A, Ezrin A, Hearse DJ. PEG-SOD and myocardial antioxidant status during ischaemia and reperfusion: Dose-response studies in the isolated blood perfused rabbit heart. J Mol Cell Cardiol 1992;24:1021–1030.

    Google Scholar 

  107. Qiu Y, Galiñanes M, Ferrari R, Cargnoni A, Ezrin A, Hearse DJ. PEG-SOD improves postichemic functional recovery and antioxidant status in blood-perfused rabbit hearts. Am J Physiol 1992;263:H1243–H1249.

    Google Scholar 

  108. Meerson FZ, Kagan VE, Kozlov YuP, Belkina LM, Arkhipenko YuV. The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res Cardiol 1982;77:465–485.

    Google Scholar 

  109. Ceconi C, Curello S, Cargnoni A, Ferrari R, Albertini A, Visioli O. The role of glutathione status in the protection against ischaemic and reperfusion damage: Effects ofN-acetyl cysteine. J Mol Cell Cardiol 1988;20:5–13.

    Google Scholar 

  110. Chambers DJ, Astras G, Takahashi A, Manning AS, Braimbridge MV, Hearse DJ. Free radicals and cardioplegia: Organic anti-oxidants as additives to the St Thomas' Hospital cardioplegic solution. Cardiovasc Res 1989;23:351–358.

    Google Scholar 

  111. Bolli R, Zhu WX, Hartley CJ, Michael LH, Repine JE, Hess ML, Kukreja RC, Roberts R. Attenuation of dysfunction in the postischemic “stunned” myocardium by dimethylthiourea. Circulation 1987;76:458–468.

    Google Scholar 

  112. Mitsos SE, Askew TE, Fantone JC, Kunkel SL, Abrams GD, Schork A, Lucchesi BR. Protective effect of N-2-mercaptopropionyl glycine against myocardial reperfusion injury after neutrophil depletion in the dog: Evidence for the role of intracellular-derived free radicals. Circulation 1986;73: 1077–1086.

    Google Scholar 

  113. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R. N-2-mercaptopropionylglycine improves recovery of myocardial function after reversible regional ischemia. J Am Coll Cardiol 1986;8:1161–1168.

    Google Scholar 

  114. Ceconi C, Curello S, Cargnoni A, Boffa GM, Ferrari R. Antioxidant protection against damage during cardiac ischemia and reperfusion: effect of dimercapto-propanol. Cardioscience 1990;1:191–198.

    Google Scholar 

  115. Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983;67:1016–1023.

    Google Scholar 

  116. Rowe GT, Eaton LR, Hess ML. Neutrophil-derived, oxygen free radical-mediated cardiovascular dysfunction. J Mol Cell Cardiol 1984;16:1075–1079.

    Google Scholar 

  117. Chambers DJ, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM. Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 1985;17:145–152.

    Google Scholar 

  118. Stewart JR, Crute SL, Loughlin V, Hess ML, Greenfield LJ. Prevention of free radical-induced myocardial reperfusion injury with allopurinol. J Thorac Cardiovasc Surg 1985;90:68–72.

    Google Scholar 

  119. Wade CR, Jackson PG, Highton J, van Rij AM. Lipid peroxidation and malondialdehyde in the synovial fluid and plasma of patients with rheumatoid arthritis. Clin Chim Acta 1987;164:245–250.

    Google Scholar 

  120. Sato Y, Hotta N, Sakamoto N, Matsuoka S, Ohishi N, Yagi K. Lipid peroxide level in plasma of diabetic patients. Biochem Med 1979;21:104–107.

    Google Scholar 

  121. Roberts MJD, Young IS, Trouton TG, Trimble ER, Khan MM, Webb SW, Wilson CM, Patterson GC, Adgey AAJ. Transient release of lipid peroxides after coronary artery balloon angioplasty. Lancet 1990;336:143–145.

    Google Scholar 

  122. Davies SW, Ranjadayalan K, Wickens DG, Dormandy TL, Umachandran V, Timmis AD. Free radical activity and left ventricular function after thrombolysis for acute infarction. Br Heart J 1993;69:114–120.

    Google Scholar 

  123. Mendis S, Sobotka PA, Leja FL, Euler DE. Breath pentane and plasma lipid peroxides in ischemic heart disease. Free Radic Biol Med 1995;19:679–684.

    Google Scholar 

  124. Tappel AL. Vitamin E and selenium protection from in vivo lipid peroxidation. Ann NY Acad Sci 1980;355:18–31.

    Google Scholar 

  125. Tappel AL, Dillard CJ. In vivo lipid peroxidation: Measurement via exhaled pentane and protection by vitamin E. Fed Proc 1981;40:174–178.

    Google Scholar 

  126. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press, 1985.

    Google Scholar 

  127. Weitz ZW, Birnbaum AJ, Sobotka PA, Zarling EJ, Skosey JL. High breath pentane concentrations during acute myocardial infarction. Lancet 1991;337:933–935.

    Google Scholar 

  128. Sobotka PA, Brottman MD, Weitz Z, Birnbaum AJ, Skosey JL, Zarling EJ. Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radic Biol Med 1993;14:643–647.

    Google Scholar 

  129. Singh RB, Niaz MA, Rastogi SS, Rastogi S. Usefulness of antioxidant vitamins in suspected acute myocardial infarction (the Indian Experiment of Infarct Survival-3). Am J Cardiol 1996;77:232–236.

    Google Scholar 

  130. McMurray J, McLay J, Chopra M, Brigdes A, Belch JJF. Evidence for enhanced free radical activity in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1990;65:1261–1262.

    Google Scholar 

  131. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ, Brown MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996; 347: 781–786.

    Google Scholar 

  132. Nishiyama Y, Ikeda H, Haramaki N, Yoshida N, Imaizumi T. Oxidative stress is related to exercise intolerance in patients with heart failure. Am Heart J 1998;135:115–120.

    Google Scholar 

  133. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy KN. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 1998;31:1352–1356.

    Google Scholar 

  134. Weissmann G, Smolen JE, Korchak HM. Release of in_am-Oxidative Stress and Ventricular Dysfunction 155 matory mediators from stimulated neutrophils. N Engl J Med 1980;303:27–34.

    Google Scholar 

  135. Werns SW, Lucchesi BR. Leukocytes, oxygen radicals, and myocardial injury due to ischemia and reperfusion. Free Radic Biol Med1988;4:31–37.

    Google Scholar 

  136. Lucchesi BR, Werns SW, Fantone JC. The role of neutrophil and free radicals in ischemic myocardial injury. J Mol Cell Cardiol 1989;21:1241–1251.

    Google Scholar 

  137. Dinerman JL, Mehta JL, Saldeen TG, Emerson S, Wallin R, Davda R, Davidson A. Increased neutrophil elastase release in unstable angina pectoris and acute myocardial infarction. J Am Coll Cardiol 1990;15:1559–1563.

    Google Scholar 

  138. Mehta J, Dinerman J, Mehta P, Saldeen TG, Lawson D, Donnelly WH, Wallin R. Neutrophil function in ischemic heart disease. Circulation 1989;79:549–556.

    Google Scholar 

  139. De Servi S, Ricevuti G, Mazzone A, Pasotti D, Bramucci E, Angoli L, Specchia G. Transcardiac release of leukotriene C4 by neutrophils in patients with coronary artery disease. J Am Coll Cardiol 1991;17:1125–1228.

    Google Scholar 

  140. De Servi S, Mazzone A, Ricevuti G, Fioravanti A, Bramucci E, Angoli L, Stefano G, Specchia G. Granulocyte activation after coronary angioplasty in humans. Circulation 1990;82:140–146.

    Google Scholar 

  141. Semb AG, Gabrielson TO, Halstensen TS, Fagerhol MK, Brandtzaeg P, Vaage J. Cardiac surgery and distribution of the leukocyte L1 protein-calprotectin. Eur J Cardiothorac Surg 1991;5:363–367.

    Google Scholar 

  142. Semb AG, Forsdahl K, Vaage J. Granulocyte and eicosanoid gradients across the coronary circulation during myocardial reperfusion in cardiac surgery. Eur J Cardiothorac Surg 1990;4:543–548.

    Google Scholar 

  143. Curello S, Ceconi C, de Giuli F, Panzali AF, Milanesi B, Calarco M, Pardini A, Marzollo P, fieri </del> O, Messineo F, Ferrari R. Oxidative stress during reperfusion of human hearts: potential sources of oxygen free radicals. Cardiovasc Res 1995;29:118–125.

    Google Scholar 

  144. Engler RL, Schmid-Schonbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 1983;111:98–111.

    Google Scholar 

  145. Ito BR, Roth DM, Engler RL. Thromboxane A2 and peptidoleukotrienes contribute to the myocardial ischemia and contractile dysfunction in response to intracoronary infusion of complement C5a in pigs. Circ Res 1990;66:596–607.

    Google Scholar 

  146. Go LO, Murry CE, Richard VJ, Weischedel GR, Jennings RB, Reimer KA. Myocardial neutrophil accumulation during reperfusion after reversible or irreversible ischemic injury. Am J Physiol 1988;255:H1188–H1198.

    Google Scholar 

  147. Simpson PJ, Mickelson J, Fantone JC, Gallagher KP, Lucchesi BR. Reduction of experimental canine myocardial infarct size with prostaglandin E1: Inhibition of neutrophil migration and activation. J Pharmacol Exp Ther 1988;244:619–624.

    Google Scholar 

  148. Simpson PJ, Todd RF 3d, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mol, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 1988;81:624–629.

    Google Scholar 

  149. Westlin W, Mullane KM. Alleviation of myocardial stunning by leukocyte and platelet depletion. Circulation 1989;80:1828–1836.

    Google Scholar 

  150. Tanaka M, Brooks SE, Richard VJ, FitzHarris GP, Stoler RC, Jennings RB, Arfors KE, Reimer KA. Effect of anti-CD18 antibody on myocardial neutrophil accumulation and infarct size after ischemia and reperfusion in dogs. Circulation 1993;87:526–535.

    Google Scholar 

  151. Delanty N, Reilly MP, Pratico D, Lawson JA, McCarthy JF, Wood AE, Ohnishi ST, Fitzgerald DJ, Fitzgerald GA. 8-Epi PGF2α(PGF2α) generation during coronary reperfusion. A potential quantitative marker of oxidant stress in vivo. Circulation 1997;95:2492–2499.

    Google Scholar 

  152. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A. Elevated levels of 8-isoprostaglandin F2α (F2α) in pericardial fluid of patients with heart failure. A potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 1998;97:1536–1539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonella, B., Claudio, C., Anna, C. et al. Oxidative Stress and Ventricular Dysfunction in Ischemic Heart Disease. Heart Fail Rev 4, 1–10 (1999). https://doi.org/10.1023/A:1009872308080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009872308080

Navigation