Skip to main content
Log in

Physiological characteristics of geophytes in semi-arid Namaqualand, South Africa

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Namaqualand, a semi-arid winter rainfall region of South Africa, supports an exceptional diversity of geophytic species. The survey focused on gas exchange reactions and chlorophyll a fluorescence in geophytes with different leaf orientation in relation to environmental variability. Although the above ground life cycle of geophytes can be extremely short, unlike desert annuals, they are not characterized by a high photosynthetic CO2 uptake. Maximum CO2 uptake ranged from 4 to 20 μmol CO2 m-2 s-1. Temperature optima of photosynthetic CO2 uptake were comparably low and ranged from 12 to 22 °C for eleven species tested, with only one species above 19 °C. The decrease of CO2 uptake with rising temperatures was associated with a substantial increase of photorespiration. Net photosynthesis was saturated between 500 and 900 μmol photons m-2 s-1 while electron transport through PSII was saturated at higher photon flux densities. At light intensities beyond saturation, a high variability of PSII efficiency occurred. It was highest for horizontal leaves and lowest for upright leaves. However, the maximum quantum yield of PSII (Fv/Fm)remained constant during the course of a day, regardless of leaf orientation. This indicates the absence of photoinhibitory effects and a well protected photosynthetic apparatus. Leaf orientation determined interception of solar radiation and thus leaf temperature which was highest for horizontal leaves. In conclusion, Namaqualand geophytes show photosynthetic characteristics that are well adapted to the mild and generally moist conditions during the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheeseman, J.M. 1994. Depressions of photosynthesis in mangrove canopies. Pp. 379-391. In: Baker, N. R. & Bowyer, J. R. (eds), Photoinhibition of photosynthesis-from molecular mechanisms to the field. Bios. Scientific Publishers, Oxford.

    Google Scholar 

  • Cheeseman, J. M., Herendeen, L. B., Cheeseman, A. T. & Clough, B. F. 1997. Photosynthesis and photoprotection in mangroves under field conditions. Plant, Cell Env. 20: 579-588.

    Google Scholar 

  • Cowling, R. M. & Hilton-Taylor, C. in press. Plant biogeography, endemism and diversity. In: Dean, W. R. J. & Milton, S. J. (eds), The Karoo: ecological patterns and processes. Cambridge University Press, Cambridge.

  • Dafni, A., Shmida, A. & Avishai, M. 1981. Leafless autumnal-flowering geophytes in the Mediterranean region. Photographical, ecological and evolutionary aspects. Pl. Syst. Evol. 173: 181-193.

    Google Scholar 

  • Demming, B. & Björkman, O. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171: 171-184.

    Google Scholar 

  • Edwards, G. E. & Baker, N. R. 1993. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynthesis Res. 37: 89-102.

    Google Scholar 

  • Eller, B. M. & N. Grobbelaar, N. 1982. Geophylly: Consequences for Ledebouria ovatifolia in its natural habitat. J. Expt. Bot. 33: 366-375.

    Google Scholar 

  • Esler, K. J., Rundel, P. W. & Vorster, P. 1999. Biogeography of prostate-leaved geophytes in semi-arid South Africa: hypotheses on functionality. Plant Ecol. 142: 105-120 (this issue).

    Google Scholar 

  • Farquhar, G. D. & Sharkey, T. D. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33: 317-345.

    Google Scholar 

  • Forseth, I. N. & Ehleringer, J. R. 1983. Ecophysiology of two solar tracking desert winter annuals. III. Gas exchange responses to light, CO2 and VPD in relation to long-term drought. Oecologia 57: 344-351.

    Google Scholar 

  • Gates, M. D. 1980. Biophysical ecology. Springer, New York Heidelberg Berlin.

    Google Scholar 

  • Genty, B., Briantais, J.-M., & Baker, N. R. 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta 990: 213-224.

    Google Scholar 

  • Herppich, M., Herppich, W. B. & von Willert D. J. 1994. Influence of drought, rain and artificial irrigation on photosynthesis, gas exchange and water relations of the fynbos plant Protea acaulos (L.) Reich at the end of the dry season. Bot. Acta 107: 440-450.

    Google Scholar 

  • Keiller, D. R., Slocombe, S. P. & Cockburn, W. 1994. Analysis of chlorophyll a fluorescence in C3 and CAM forms of Mesembryanthemum crystallinum. J. Expt. Bot. 45: 325-334.

    Google Scholar 

  • Krall, J. P. & Edwards, G. E. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant. 86: 180-187.

    Google Scholar 

  • Krause G. H., Virgo, A. & Winter K. 1995. High susceptibility to photoinhibitions of young leaves of tropical forest trees. Planta 197: 583-591.

    Article  Google Scholar 

  • Krause G. H. & Winter K. 1996. Photoinhibition of photosynthesis in plants growing in natural tropical forest gaps. A chlorophyll fluorescence study. Bot. Acta 109: 456-462.

    Google Scholar 

  • Lombard, A. T., Hilton-Taylor, C. & Cowling, R. M. 1999. Reserve selection in the Succulent Karoo, South Africa: coping with high compositional turnover. Plant Ecol. 142: 35-55 (this issue).

    Google Scholar 

  • Long, S. P., Humphries, S. & Falkowski, P. G. 1994. Photoinhibition of photosynthesis in nature. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45: 633-662.

    Google Scholar 

  • Loreto, F., Di Marco, G. Tricoli, D. & Sharkey, T. D. 1994. Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves. Photosynthesis Res. 41: 397-403.

    Google Scholar 

  • Manning, J. & Goldblatt, P. 1997. Nieuwoudtville. Bokkeveld Plateau & Hantam. South African Wilde Flower Guide 9. Botanical Society of South Africa.

  • Ni, B.-R. & Pallardy, S. G. 1992. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms. Plant Physiol. 99: 1502-1508.

    Google Scholar 

  • Oberhuber, W. & Edwards, G. E. 1993. Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiol. 101: 507-512.

    PubMed  Google Scholar 

  • Pate, J. S. & Dixon, K. W. 1981. Plants with fleshy underground storage organs-A Western Australian survey. Pp. 181-215. In: Pate, J. S. & McComb, A. J. (eds), The biology of Australian plants. University of Western Australia Press.

  • Pearcy, R. W. & Ehleringer, J. 1984. Comparative ecophysiology of C3 and C4 plants. Plant, Cell Env. 7: 1-13.

    Google Scholar 

  • Raunkiaer, C. 1907. Platerigets Livsformer og deres Betydning for Geografien. Nordisk Verl., Copenhagen.

    Google Scholar 

  • Ruiters, C. 1995. Biomass and recource allocation patterns within the bulb of the perennial geophyte Haemanthus pubescens L. subsp. pubescens (Amaryllidaceae) in a periodic arid environment of lowland fynbos, South Africa. J. Arid Env. 31:311-323.

    Google Scholar 

  • Ruiters, C., McKenzie, B., Aalbers, J. & Raitt, L. M. 1993a. Seasonal allocation of biomass and resources in the geophytic species Haemanthus pubescens subspecies pubescens in lowland coastal fynbos, South Africa. South African J. Bot. 59: 251-258.

    Google Scholar 

  • Ruiters, C., McKenzie, B. & Raitt, L. M. 1993b. Life-history studies of the perennial geophyte Haemanthus pubescens L. subspecies pubescens (Amaryllidaceae) in lowland coastal fynbos, South Africa. Int. J. Plant Sci. 154: 441-449.

    Google Scholar 

  • Schreiber, U. & Bilger, W. 1993. Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Progress in Botany 54: 151-173

    Google Scholar 

  • Schreiber, U., Bilger, W. & Neubauer, C. 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Pp. 49-70. In: Schulze, E.-D. & Caldwell, M.M. (eds), Ecophysiology of Photosynthesis. Springer Verlag, Berlin.

    Google Scholar 

  • Stewart, J. D., Zine el Abidine, A. & Bernier, P. Y. 1995. Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought. Tree Physiol. 15: 57-64.

    PubMed  Google Scholar 

  • Teskey, R. O., Fites, J. A., Samuelson, L. J. & Bongarten, B. C. 1986. Stomatal limitations to net photosynthesis in Pinus taeda L. under different environmental conditions. Tree Physiol. 2: 131-142.

    PubMed  Google Scholar 

  • Toft, N. L. & Pearcy, R. W. 1982. Gas exchange characteristics and temperature relations of two desert annuals: A comparison of a winter-active and a summer-active species. Oecologia 55: 170-177.

    Google Scholar 

  • Tüffers, A. 1997. Ökophysiologie der Photosynthese beiMangroven der Ostküste Südafrikas. Dissertation, Münster.

  • von Caemmerer, S. & Farquhar, G. D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376-387.

    Google Scholar 

  • von Willert, D. J., Eller, B. M., Werger, M. J. A., Brinckmann, E. & Ihlenfeldt, H.-D. 1992. Life strategies of succulents in deserts. Cambridge University Press, Cambridge.

    Google Scholar 

  • von Willert, D. J. & Popp, M. 1995. Gas exchange and water relations of two mistletoes, Tapinanthus oleifolius and Viscum rotundifolium, on the same host, Acacia nebrownii, in south-eastern Namibia. S. Afr. J. Bot. 61: 264-273.

    Google Scholar 

  • Werk, K. S., Ehleringer, J., Forseth, I. N. & Cook, C.S. 1983. Photosynthetic characteristics of Sonoran desert winter annuals. Oecologia 59: 101-105.

    Google Scholar 

  • Willmer, C. & Fricker, M. 1996. Stomata. Chapman & Hall, London.

    Google Scholar 

  • Witkowski, E. T. F. 1989. Response to nutrient additions by the plant growth forms of sand-plain lowland fynbos, South Africa. Vegetatio 79: 89-97.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossa, B., von Willert, D.J. Physiological characteristics of geophytes in semi-arid Namaqualand, South Africa. Plant Ecology 142, 121–132 (1999). https://doi.org/10.1023/A:1009870227638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009870227638

Navigation