Skip to main content
Log in

Changes in Gene Expression during the Transition from Compensated Hypertrophy to Heart Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

With the advancement in molecular techniques for characterizing genes and the use of animal models as tools to study heart failure, considerable progress has been made in improving our understanding of the regulation and function of genes associated with heart failure. Studies now indicate that autocrine/paracrine factors including neurohormones such as norepinephrine, angiotensin II, proinflammatory cytokines and peptide growth factors produced locally in the heart may affect myocyte growth and function through intricate signaling mechanisms. While changes in gene expression for the proteins involved in cell signaling may lead to myocyte hypertrophy and/or apoptosis, alteration in calcium homeostasis, excitation-contraction coupling and the extracellular matrix also contribute to systolic and diastolic dysfunction leading to heart failure. Thus, heart failure is a complex process, which involves changes in expression of multiple genes. With the advent of new techniques involving microarray and gene chip technology, it is now possible to define and/or identify sets of genes involved in heart failure. The purpose of this review is to provide an overview of molecular signals, intracellular signaling mechanisms and the changes in gene expression associated with the transition from compensated hypertrophy to failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dzau VJ. Autocrine and paracrine mechanisms in the pathophysiology of heart failure. Am J Cardiol 1992;70:4C-11C.

    Google Scholar 

  2. Hirsch AT, Pinto YM, Schunkert H, Dzau VJ. Potential role of the tissue renin-angiotensin system in the pathophysiology of congestive heart failure. AmJ Cardiol 1990;66: 22D-30D.

    Google Scholar 

  3. Hasking GJ, Esler MD, Jennings GL, Dewar E, Lambert G. Norepinephrine spillover to plasma during steady-state supine bicycle exercise. Comparison of patients with congestive heart failure and normal subjects. Circulation 1988;78:516–521.

    Google Scholar 

  4. Swedberg K, Viquerat C, Rouleau JL, Roizen M, Atherton B, Parmley WW, Chatterjee K. Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol 1984;54:783–786.

    Google Scholar 

  5. Bohm M, Castellano M, Paul M, Erdmann E. Cardiac norepinephrine, beta-adrenoceptors, and Gi alpha-proteins in prehypertensive and hypertensive spontaneously hypertensive rats. J Cardiovasc Pharmacol 1994;23:980–987.

    Google Scholar 

  6. Anderson KM, Eckhart AD, Willette RN, Koch WJ. The myocardial beta-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. Hypertension 1999;33: 402–407.

    Google Scholar 

  7. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982;307:205–211.

    Google Scholar 

  8. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 1993;87:454–463.

    Google Scholar 

  9. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R. Beta 1-and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 1989;35:295–303.

    Google Scholar 

  10. Feldman MD, Copelas L, Gwathmey JK, Phillips P, Warren SE, Schoen FJ, Grossman W, Morgan J P. Deficient production of cyclic AMP: Pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 1987;75:331–339.

    Google Scholar 

  11. Atkins FL, Bing OH, DiMauro PG, Conrad CH, Robinson KG, Brooks WW. Modulation of left and right ventricular beta-adrenergic receptors from spontaneously hypertensive rats with left ventricular hypertrophy and failure. Hypertension 1995;26:78–82.

    Google Scholar 

  12. Feldman AM, Cates AE, Bristow MR, Van Dop C. Altered expression of alpha-subunits of G proteins in failing human hearts. J Mol Cell Cardiol 1989;21:359–365.

    Google Scholar 

  13. Marcil J, de Champlain J, Anand-Srivastava MB. Overexpression of Gi-proteins precedes the development of DOCAsalt-induced hypertension: Relationship with adenylyl cyclase. Cardiovasc Res 1998;39:492–505.

    Google Scholar 

  14. Marcil J, Thibault C, Anand-Srivastava MB. Enhanced expression of Gi-protein precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol 1997;29:1009–1022.

    Google Scholar 

  15. Yamazaki T, Komuro I, Yazaki Y. Signalling pathways for cardiac hypertrophy. Cell Signal 1998;10:693–698.

    Google Scholar 

  16. Mann DL, Kent RL, Parsons B, Cooper G 4th. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992;85:790–804.

    Google Scholar 

  17. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 1998;98:1329–1334.

    Google Scholar 

  18. Calderone A, Thaik CM, Takahashi N, Colucci WS. Norepinephrine-stimulated DNA and protein synthesis in cardiac fibroblasts are inhibited by nitric oxide and atrial natriuretic factor. Circulation 1995;92(Suppl I):I–382

    Google Scholar 

  19. Port JD, Weinberger HD, Bisognano JD, Knudsor OA, Bohlmeyer TJ, Pende A, Bristow MR. Echocardiographic and histopathological characterization of young and old transgenic mice over-expressing the human beta1-adrenergic receptor. J Am Coll Cardiol 1998;31:177A

    Google Scholar 

  20. Geng YJ, Ishikawa Y, Vatner DE, Wagner TE, Bishop SP, Vatner SF, Homcy CJ. Apoptosis of cardiac myocytes in Gsalpha transgenic mice. Circ Res 1999;84:34–42.

    Google Scholar 

  21. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW 2nd. Enhanced Galphaq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 1998;95:10140–10145.

    Google Scholar 

  22. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt LI, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:1182–1189.

    Google Scholar 

  23. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–1141.

    Google Scholar 

  24. Olsen SL, Gilbert EM, Renlund DG, Taylor DO, Yanowitz FD, Bristow MR. Carvedilol improves left ventricular function and symptoms in chronic heart failure: A double-blind randomized study. J Am Coll Cardiol 1995;25:1225–1231.

    Google Scholar 

  25. Heilbrunn SM, Shah P, Bristow MR, Valantine HA, Ginsburg R, Fowler MB. Increased beta-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 1989;79: 483–490.

    Google Scholar 

  26. Weber KT, Swamynathan SK, Guntaka RV, Sun Y. Angiotensin II and extracellular matrix homeostasis. Int J Biochem Cell Biol 1999;31:395–403.

    Google Scholar 

  27. Sun Y, Weber KT. Cardiac remodelling by fibrous tissue: Role of local factors and circulating hormones. Ann Med 1998;30(Suppl 1):3–8.

    Google Scholar 

  28. Sun Y, Ramires FJ, Zhou G, Ganjam VK, Weber KT. Fibrous tissue and angiotensin II. J Mol Cell Cardiol 1997;29: 2001–2012.

    Google Scholar 

  29. Lorell BH. Cardiac renin-angiotensin system: Role in development of pressure-overload hypertrophy. Can J Cardiol 1995;11(Suppl F):7F-12F.

    Google Scholar 

  30. Studer R, Reinecke H, Muller B, Holtz J, Just H, Drexler H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest 1994;94: 301–310.

    Google Scholar 

  31. Wolfel EE. Effects of ACE inhibitor therapy on quality of life in patients with heart failure. Pharmacotherapy 1998;18:1323–1334.

    Google Scholar 

  32. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997;29: 859–870.

    Google Scholar 

  33. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272:H2313–2319.

    Google Scholar 

  34. Brooks WW, Bing OH, Robinson KG, Slawsky MT, Chaletsky DM, Conrad CH. Effect of angiotensin-converting enzyme inhibition on myocardial fibrosis and function in hypertrophied and failing myocardium from the spontaneously hypertensive rat. Circulation 1997;96:4002–4010.

    Google Scholar 

  35. Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M, Fowler MB. AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 1997;95:1201–1206.

    Google Scholar 

  36. Kurabayashi M, Yazaki Y. Downregulation of angiotensin II receptor type 1 in heart failure. A process of adaptation or deterioration? Circulation 1997;95:1104–1107.

    Google Scholar 

  37. Asano K, Dutcher DL, Port JD, Minobe WA, Tremmel KD, Roden RL, Bohlmeyer TJ, Bush EW, Jenkin MJ, Abraham WT, Raynolds MV, Zisman LS, Perryman MB, Bristow MR. Selective downregulation of the angiotensin II AT1-receptor subtype in failing human ventricular myocardium. Circulation 1997;95:1193–1200.

    Google Scholar 

  38. Eichhorn EJ, Bristow MR. Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation 1996;94: 2285–2296.

    Google Scholar 

  39. Bristow MR, Abraham WT. Anti-adrenergic effects of angiotensin converting enzyme inhibitors. Eur Heart J 1995;16(Suppl K):37–41.

    Google Scholar 

  40. Malik KU, Nasjletti A. Facilitation of adrenergic transmission by locally generated angiotensin II in rat mesenteric arteries. Circ Res 1976;38:26–30.

    Google Scholar 

  41. Schiffrin EL. Endothelin and endothelin antagonists in hypertension. J Hypertens 1998;16:1891–1895.

    Google Scholar 

  42. Cody RJ, Haas GJ, Binkley PF, Capers Q, Kelley R. Plasma endothelin correlates with the extent of pulmonary hypertension in patients with chronic congestive heart. Circulation 1992;85:504–509.

    Google Scholar 

  43. Haynes WG, Webb DJ. Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 1998; 16:1081–1098.

    Google Scholar 

  44. Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990;265:20555–20562.

    Google Scholar 

  45. Iwanaga Y, Kihara Y, Hasegawa K, Inagaki K, Yoneda T, Kaburagi S, Araki M, Sasayama S. Cardiac endothelin-1 plays a critical role in the functional deterioration of left ventricles during the transition from compensatory hypertrophy to congestive heart failure in salt-sensitive hypertensive rats. Circulation 1998;98:2065–2073.

    Google Scholar 

  46. Zolk O, Quattek J, Sitzler G, Schrader T, Nickenig G, Schnabel P, Schnabel P, Shimada K, Takahashi M, Bohm M. Expression of endothelin-1, endothelin-converting enzyme, and endothelin receptors in chronic heart failure. Circulation 1999;99:2118–2123.

    Google Scholar 

  47. Wu-Wong JR, Chiou WJ, Dickinson R, Opgenorth TJ. Endothelin attenuates apoptosis in human smooth muscle cells. Biochem J 1997;328:733–737.

    Google Scholar 

  48. Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA. Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 1998;273:10261–10269.

    Google Scholar 

  49. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the Studies of Left Ventricular Dysfunction (SOLVD).J Am Coll Cardiol 1996;27:1201–1206.

    Google Scholar 

  50. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumour necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–241.

    Google Scholar 

  51. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93:704–711.

    Google Scholar 

  52. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 1995;92:1487–1493.

    Google Scholar 

  53. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 1989;86:6753–6757.

    Google Scholar 

  54. Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1997;95:1247–1252.

    Google Scholar 

  55. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 1995;96: 1093–1099.

    Google Scholar 

  56. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna JW, Fowler MB. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93(6):1087–1094.

    Google Scholar 

  57. de Belder AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF. Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischaemic or valvar heart disease. Br Heart J 1995;74: 426–430.

    Google Scholar 

  58. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997;80:15L-25L.

    Google Scholar 

  59. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 1999;84:21–33.

    Google Scholar 

  60. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 1996;98:2854–2865.

    Google Scholar 

  61. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998; 98:794–799.

    Google Scholar 

  62. Siwik DA, Tzortzis JD, Pimental DR, Chang D-LF, Pagano PJ, Singh K, Sawyer DB, Colucci WS. Inhibition of copperzinc superoxide dismutase induces cell growth, hypertrophic phenotype and apoptosis in neonatal rat cardiacmyocytes in vitro. Circ Res. 1999;85:147–153.

    Google Scholar 

  63. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 1997;81:627–635.

    Google Scholar 

  64. Boluyt MO, Bing OH, Lakatta EG. The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. EurHeart J 1995;16(Suppl N): 19–30.

    Google Scholar 

  65. Donath MY, Sutsch G, Yan XW, Piva B, Brunner HP, Glatz Y, Zapf J, Follath F, Froesch ER, Kiowski W. Acute cardiovascular effects of insulin-like growth factor I in patients with chronic heart failure. J Clin Endocrinol Metab 1998;83:3177–3183.

    Google Scholar 

  66. Acevedo M, Corbalan R, Godoy I, Jalil J, Campusano C, Klaassen J. Growth hormone deficiency in patients with chronic heart failure. Rev Med Chil 1997;125:30–35.

    Google Scholar 

  67. Sun X, Ng YC. Effects of norepinephrine on expression of IGF-1/IGF-1R and SERCA2 in rat heart. Cardiovasc Res 1998;37:202–209.

    Google Scholar 

  68. Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 1996;28:506–514.

    Google Scholar 

  69. Dhalla AK, Singal PK. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Physiol 1994;266:H1280–1285.

    Google Scholar 

  70. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P. Stretch-induced programmed myocyte cell death. J Clin Invest 1995;96: 2247–2259.

    Google Scholar 

  71. Li PF, Dietz R, von Harsdorf R. Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-beta1 in cardiac fibroblasts. FEBS Lett 1999;448:206–210.

    Google Scholar 

  72. Feuerstein G, Liu GL, Yue TL, Cheng HY, Hieble JP, Arch JR, Ruffolo RR Jr, Ma X L. Comparison of metoprolol and carvedilol pharmacology and cardioprotection in rabbit ischemia and reperfusion model. Eur J Pharmacol 1998;351:341–350.

    Google Scholar 

  73. Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR Jr, Feuerstein G Z. Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 1998;82:166–174.

    Google Scholar 

  74. Cabell KS, Ma L, Johnson P. Effects of antihypertensive drugs on rat tissue antioxidant enzyme activities and lipid peroxidation levels. Biochem Pharmacol 1997;54:133–141.

    Google Scholar 

  75. Sugden PH, Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 1998;83:345–352.

    Google Scholar 

  76. Jiang Y, Gram H, Zhac M, New L, Feng L, Di Padova F, Ulevitch RJ, Han J. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38d. J Biol Chem 1997;272: 30122–30128.

    Google Scholar 

  77. Force T, Bonventre JV. Growth factors and mitogen-activated protein kinases. Hypertension 1998;31:152–161.

    Google Scholar 

  78. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390:88–91.

    Google Scholar 

  79. Thorburn J, Carlson M, Mansour SJ, Chien KR, Ahn NG, Thorburn A. Inhibition of a signaling pathway in cardiac muscle cells by active mitogen-activated protein kinase kinase. Mol Biol Cell 1995;6:1479–1490.

    Google Scholar 

  80. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 1988;273:5423–5426.

    Google Scholar 

  81. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998;273:2161–2168.

    Google Scholar 

  82. Li WG, Zaheer A, Coppey L, Oskarsson HJ. Activation of JNK in the remote myocardium after large myocardial infarction in rats. Biochem Biophys Res Commun 1998; 246:816–820.

    Google Scholar 

  83. Simpson PC. Beta-protein kinase C and hypertrophic signaling in human heart failure. Circulation 1999;99:334–337.

    Google Scholar 

  84. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA. 1997;94: 9320–9325.

    Google Scholar 

  85. Bowman JC, Steinberg SF, Jiang T, Geenen DL, Fishman GI, Buttrick PM. Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest 1997;100:2189–2195.

    Google Scholar 

  86. Rouet-Benzineb P, Mohammadi K, Perennec J, Poyard M, Bouanani Nel-H, Crozatier B. Protein kinase C isoform expression in normal and failing rabbit hearts. Circ Res 1996;79:153–161.

    Google Scholar 

  87. Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, Mintze K, Pickard T, Roder R, Bristow MR, Sabbah HN, Mizrahi JL, Gromo G, King GL, Vlahos CJ. Increased protein kinase C activity and expression of Ca21-sensitive isoforms in the failing human heart. Circulation 1999;99:384–391.

    Google Scholar 

  88. Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P. Identification and expression of delta-isoforms of the multifunctional Ca21/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res 1999;84(6):713–721.

    Google Scholar 

  89. Hoch B, Haase H, Schulze W, Hagemann D, Morano I, Krause EG, Karczewski P. Differentiation-dependent expression of cardiac delta-CaMKII isoforms. J Cell Biochem 1998;68:259–268.

    Google Scholar 

  90. Hawkins C, Xu A, Narayanan N. Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca21/calmodulin-dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation. J Biol Chem 1994;269: 31198–31206.

    Google Scholar 

  91. Xu A, Hawkins C, Narayanan N. Phosphorylation and activation of the Ca(21)-pumping ATPase of cardiac sarcoplasmic reticulum by Ca21/calmodulin-dependent protein kinase. J Biol Chem 1993;268:8394–8397.

    Google Scholar 

  92. Olson EN, Molkentin JD. Prevention of cardiac hypertrophy by calcineurin inhibition: Hope or hype? Circ Res 1999;84: 623–632.

    Google Scholar 

  93. Molkentin, JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215–228.

    Google Scholar 

  94. Sugden PH. Signaling in myocardial hypertrophy: life after calcineurin? Circ Res 1999;84(6):633–646.

    Google Scholar 

  95. Neumann J, Bartel S, Eschenhagen T, Haverich A, Hirt S, Karczewski P, Krause EG, Schmitz W, Scholz H, Stein B, Thoenes M. Dissociation of the effects of forskolin and dibutyryl cAMP on force of contraction and phospholamban phosphorylation in human heart failure. J Cardiovasc Pharmacol 1999;33:157–162.

    Google Scholar 

  96. Neumann J, Eschenhagen T, Jones LR, Linck B, Schmitz W, Scholz H, Zimmermann N. Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 1997;29:265–272.

    Google Scholar 

  97. Haneda M, Sugimoto T, Kikkawa R. Mitogen-activated protein kinase phosphatase: A negative regulator of the mitogen-activated protein kinase cascade. Eur J Pharmacol 1999;365:1–7.

    Google Scholar 

  98. Fuller SJ, Davies EL, Gillespie-Brown J, Sun H, Tonks NK. Mitogen-activated protein kinase phosphatase 1 inhibits the stimulation of gene expression by hypertrophic agonists in cardiac myocytes. Biochem J 1997;323:313–329.

    Google Scholar 

  99. Cheng TH, Shih NH, Chen SY, Wang DL. Reactive oxygen species modulate endothelin-1-induced c-fos gene expression in cardiocytes. Cardiovasc Res 1999;41:654–662.

    Google Scholar 

  100. Zimmer HG. Catecholamine-induced cardiac hypertrophy: significance of proto-oncogene expression. J Mol Med 1997;75:849–859.

    Google Scholar 

  101. Singh K, Balligand JL, Fischer TA, Smith TW, Kelly RA. Regulation of cytokine-inducible nitric oxide synthase in cardiac myocytes and microvascular endothelial cells. Role of extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) and STAT1 alpha. J Biol Chem 1996;271: 1111–1117.

    Google Scholar 

  102. Schneider MD, Parker TG. Molecular mechanisms of cardiac growth and hypertrophy: myocardial growth factors and proto-oncogenes in development and disease. In: Roberts R, ed. Molecular Basis of Cardiology. Blackwell Scientific Publications, 1993:113–134.

  103. Larsen TH, Skar R, Frotjold EK, Haukanes K, Greve G, Saetersdal T. Regional activation of the immediate-early response gene c-fos in infarcted rat hearts. Int J Exp Pathol 1998;79:163–172.

    Google Scholar 

  104. Pollack PS, Pasquarello LM, Budjak R, Fernandez E, Soprano KJ, Redfern BG, Goldman B. Differential expression of c-jun and junD in end-stage human cardiomyopathy. J Cell Biochem 1997;65:245–253.

    Google Scholar 

  105. Fujitani N, Kawaguchi N, Toda S, Matsumura S, Kimura H, Onishi S. Immunocytochemical detection of enhanced expression of c-myc protein in the heart of cardiomyopathic hamster. Mol Cell Biochem 1997;169:73–78.

    Google Scholar 

  106. de Groot RP, Coffer PJ, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GMCSF receptor family. Cell Signal 1998;10:619–628.

    Google Scholar 

  107. Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J Jr, Muller W, Chien KR. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999;97:189–198.

    Google Scholar 

  108. Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T. Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 1998;98:346–352.

    Google Scholar 

  109. Wang CY, Mayo MW, Korneluk RG, Goedde DV, Baldwin AS Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281:1680–1683.

    Google Scholar 

  110. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996;274:787–789.

    Google Scholar 

  111. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996;274 (5288):782–784.

    Google Scholar 

  112. Wong SC, Fukuchi M, Melnyk P, Rodger I, Giaid A. Induction of cyclooxygenase-2 and activation of nuclear factorkappaB in myocardium of patients with congestive heart failure. Circulation 1998;98(2):100–103.

    Google Scholar 

  113. Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM. Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest 1998;101:2415–2426.

    Google Scholar 

  114. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 1998;12:3320–3324.

    Google Scholar 

  115. Sylven C, Jansson E, Sotonyi P, Waagstein F, Barkhem T, Bronnegard M. Cardiac nuclear hormone receptor mRNAin heart failure in man. Life Sci 1996;59:1917–1922.

    Google Scholar 

  116. Colbert MC, Hall DG, Kimball TR, Witt SA, Lorenz JN, Kirby ML, Hewett TE, Klevitsky R, Robbins J. Cardiac compartment-specific overexpression of a modified retinoic acid receptor produces dilated cardiomyopathy and congestive heart failure in transgenic mice. J Clin Invest 1997; 100:1958–1968.

    Google Scholar 

  117. Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 1998;37:279–289.

    Google Scholar 

  118. Rasmussen RP, Minobe W, Bristow MR. Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium. Biochem Pharmacol 1990;39:691–696.

    Google Scholar 

  119. Schroder F, Handrock R, Beuckelmann DJ, Hirt S, Hullin R, Priebe L, Schwinger RH, Weil J, Herzig S. Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 1998;98:969–976.

    Google Scholar 

  120. Takahashi T, Allen PD, Lacro RV, Marks AR, Dennis AR, Schoen FJ, Grossman W, Marsh JD, Izumo S. Expression of dihydropyridine receptor (Ca21 channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J Clin Invest 1992;90:927–935.

    Google Scholar 

  121. Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V, Franzini-Arnstrong C, Cleeman L, Morad M. Regulation of ca11 signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 1998;101:1385–1393.

    Google Scholar 

  122. Mukherjee R, Spinale FG. L-type calcium channel abundance and function with cardiac hypertrophy and failure: a review. J Mol Cell Cardiol 1998;30:1899–1916.

    Google Scholar 

  123. Mukherjee R, Hewett KW, Walker JD, Basler CG, Spinale FG. Changes in L-type calcium channel abundance and function during the transition to pacing-induced congestive heart failure. Cardiovasc Res 1998;37:432–444.

    Google Scholar 

  124. Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, Just H, Holtz J, Drexler H. Gene expression of the cardiac Na(1)-Ca21 exchanger in end-stage human heart failure. Circ Res 1994;75:443–453.

    Google Scholar 

  125. O'Rourke B, Fan Peng Ling, Thomaselli GF, Marban E. Excitation-contraction coupling alterations in canine tachycardia-induced heart failure. Circulation 1997;96:238.

    Google Scholar 

  126. Yao A, Su Z, Nonaka A, Zubair I, Spitzer KW, Bridge JH, Muelheims G, Ross J Jr, Barry WH. Abnormal myocyte Ca21 homeostasis in rabbits with pacing-induced heart failure. Am J Physiol 1998;275:H1441–1448.

    Google Scholar 

  127. Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E. Unchanged protein levels of SERCAII and phospholamban but reduced Ca21 uptake and Ca(21)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 1995;92:3220–3228.

    Google Scholar 

  128. Meyer M, Dillmann WH. Sarcoplasmic reticulum ca11-ATPase overexpression by adenovirus mediated gene transfer and in transgenic mice. Cardiovasc Res 1998;37:360–366.

    Google Scholar 

  129. Phillips RM, Narayan P, Gomez AM, Dilly K, Jones LR, Lederer WJ, Altschuld RA. Sarcoplasmic reticulum in heart failure: Central player or bystander? Cardiovasc Res 1998;37:346–351.

    Google Scholar 

  130. Okayama H, Hamada M, Kawakami H, Ikeda S, Hashida H, Shigematsu Y, Hiwada K. Alterations in expression of sarcoplasmic reticulum gene in Dahl rats during the transition from compensatory myocardial hypertrophy to heart failure. J Hypertens 1997;15:1767–1774.

    Google Scholar 

  131. Mittmann C, Munstermann U, Weil J, Bohm M, Herzig S, Nienaber C, Eschenhagen T. Analysis of gene expression patterns in small amounts of human ventricularmyocardium by a multiplex RNase protection assay. J Mol Med 1998;76:133–140.

    Google Scholar 

  132. Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, Walsh RA, Kranias EG. Cardiac-specific overexpression of phospholamban alters kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 1996;97:533–539.

    Google Scholar 

  133. Kiss E, Ball NA, Kranias EG, Walsh RA. Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(21)-ATPase protein levels. Effects on Ca21 transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 1995;77: 759–764.

    Google Scholar 

  134. Lai LP, Raju VS, Delehanty JM, Yatani A, Liang CS. Altered sarcoplasmic reticulum Ca21ATPase gene expression in congestive heart failure: Effect of chronic norepinephrine infusion. J Mol Cell Cardiol 1998;30:175–185.

    Google Scholar 

  135. Vatner DE, Sato N, Kiuchi K, Shannon RP, Vatner SF. Decrease in myocardial ryanodine receptors and altered excitation-contraction coupling early in the development of heart failure. Circulation 1994;90:1423–1430.

    Google Scholar 

  136. Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 1995;95:888–894.

    Google Scholar 

  137. Sainte Beuve C, Allen PD, Dambrin G, Rannou F, Marty I, Trouve P, Bors V, Pavie A, Gandgjbakch I, Charlemagne D. Cardiac calcium release channel (ryanodine receptor) in control and cardiomyopathic human hearts: mRNA and protein contents are differentially regulated. J Mol Cell Cardiol 1997;29:1237–1246.

    Google Scholar 

  138. Igarashi-Saito K, Tsutsui H, Yamamoto S, Takahashi M, Kinugawa S, Tagawa H, Usui M, Yamamoto M, Egashira K, Takeshita A. Role of SR Ca21-ATPase in contractile dysfunction of myocytes in tachycardia-induced heart failure. Am J Physiol 1998;275:H31–40.

    Google Scholar 

  139. Solaro RJ, Rarick HM. Troponin and tropomyosin: Proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 1998;83:471–480.

    Google Scholar 

  140. Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ. Troponin I gene expression during human cardiac development and in endstage heart failure. Circ Res 1993;72:932–938.

    Google Scholar 

  141. Morano I, Hadicke K, Haase H, Bohm M, Erdmann E, Schaub MC. Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart. J Mol Cell Cardiol 1997;29:1177–1187.

    Google Scholar 

  142. Kameyama T, Chen Z, Bell SP, VanBuren P, Maughan D, LeWinter MM. Mechanoenergetic alterations during the transition from cardiac hypertrophy to failure in Dahl saltsensitive rats. Circulation 1998;98:2919–2929.

    Google Scholar 

  143. Townsend PJ, Barton PJ, Yacoub MH, Farza H. Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart. J Mol Cell Cardiol 1995; 27:2223–2236.

    Google Scholar 

  144. Feldman AM, Weinberg EO, Ray PE, Lorell BH. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 1993;73:184–192.

    Google Scholar 

  145. Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife RA, Roden RL, Dutcher DL, Robertson AD, Voelkel NF, Badesch DB, Groves BM, Gilbert EM, Bristow MR. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertro-phied, failing ventricular myocardium. J Clin Invest 1997; 100:2315–2324.

    Google Scholar 

  146. Hein S, Scholz D, Fujitani N, Rennollet H, Brand T, Friedl A, Schaper J. Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 1994;26:1291–1306.

    Google Scholar 

  147. Collins JF, Pawloski-Dahm C, Davis MG, Ball N, Dorn GW 2nd, Walsh RA. The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure. J Mol Cell Cardiol 1996;28:1435–1443.

    Google Scholar 

  148. Piano MR, Bondmass M, Schwertz DW. The molecular and cellular pathophysiology of heart failure. Heart Lung 1998; 27:3–19.

    Google Scholar 

  149. Buck CA, Horwitz AF. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol 1987;3:179–205.

    Google Scholar 

  150. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 1995;91:161–170.

    Google Scholar 

  151. Bing OH, Ngo HQ, Humphries DE, Robinson KG, Lucey EC, Carver W, Brooks WW, Conrad CH, Hayes JA, Goldstein RH. Localization of alpha1(I) collagen mRNA in myocardium from the spontaneously hypertensive rat during the transition from compensated hypertrophy to failure. J Mol Cell Cardiol 1997;29:2335–2344.

    Google Scholar 

  152. Mujumdar VS, Tyagi SC. Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. J Hypertens 1999;17:261–270.

    Google Scholar 

  153. Speiser B, Weihrauch D, Riess CF, Schaper J. The extracellular matrix in human cardiac tissue. Part II: Vimentin, laminin, and fibronectin. Cardioscience 1992;3:41–49.

    Google Scholar 

  154. Schaper J, Speiser B. The extracellular matrix in the failing human heart. Basic Res Cardiol 1992;87(Suppl 1): 303–309.

    Google Scholar 

  155. Iwai N, Shimoike H, Kinoshita M. Genes up-regulated in hypertrophied ventricle. Biochem Biophys Res Commun 1995;209:527–534.

    Google Scholar 

  156. Baliga RR, Brooks WW, Bing OHL, Singh K. Expression of beta-1 integrins in cardiac hypertrophy. Circulation 1998; 98(suppl):I–648.

    Google Scholar 

  157. Singh K, Sirokman G, Communal C, Robinson KG, Conrad CH, Brooks WW, Bing OH, Colucci WS. Myocardial osteopontin expression coincides with the development of heart failure. Hypertension 1999;33:663–670.

    Google Scholar 

  158. Murry CE, Giachelli CM, Schwartz SM, Vracko R. Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol 1994;145:1450–1462.

    Google Scholar 

  159. Graf K, Do YS, Ashizawa N, Meehan WP, Giachelli CM, Marboe CC, Fleck E, Hsueh WA. Myocardial osteopontin expression is associated with left ventricular hypertrophy. Circulation 1997;96:3063–3071.

    Google Scholar 

  160. Giachelii CM, Schwartz SM, Liaw L. Molecualar and cellular biology of osteopontin: potential role in cardiovascular disease. Trends Cardiovas Med 1995;5:88–95.

    Google Scholar 

  161. Singh K, Balligand J-L, Fischer TF, Smith TW, Kelly RA. Glucocorticoids increase osteopontin expression in cardiac myocytes and microvascular endothelial cells: role in regulation of inducible nitric oxide synthase. J Biol Chem 1995;270:28471–28478.

    Google Scholar 

  162. Sack MN, Kelly DP. The energy substrate switch during development of heart failure: gene regulatory mechanisms (Review). Int J Mol Med 1998;1:17–24.

    Google Scholar 

  163. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 1996;94: 2837–2842.

    Google Scholar 

  164. O'Donnell MJ, Narayan P, Bailey MQ, Abduljalil AM, Altschuld RA, McCune SA, Robitaille PM. 31P-NMR analysis of congestive heart failure in the SHHF/Mcc-facp rat heart. J Mol Cell Cardiol 1998;30:235–241.

    Google Scholar 

  165. Morii I, Kihara Y, Inoko M, Sasayama S. Myocardial contractile efficiency and oxygen cost of contractility are preserved during transition from compensated hypertrophy to failure in rats with salt-sensitive hypertension. Hypertension 1998;31:949–960.

    Google Scholar 

  166. Tian R, Nascimben L, Kaddurah-Daouk R, Ingwall JS. Depletion of energy reserve via the creatine kinase reaction during the evolution of heart failure in cardiomyopathic hamsters. J Mol Cell Cardiol 1996;28:755–765.

    Google Scholar 

  167. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 1997;96:2190–2196.

    Google Scholar 

  168. Bing OHL, Wiegner AW, Brooks WW, Fishbein MC, Pfeffer JM. Papillary muscle structure-function relations in the ageing spontaneously hypertensive rat. Clin & Exp Hypertens 1988;10:35–58.

    Google Scholar 

  169. Simpson P, McGrath A, Savion S. Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res 1982;51:787–801.

    Google Scholar 

  170. Ritchie RH, Schiebinger RJ, LaPointe MC, Marsh JD. Angiotensin II-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol 1998;275: H1370–1374.

    Google Scholar 

  171. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiacmyocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 1993;73:413–423.

    Google Scholar 

  172. King KL, Winer J, Phillips DM, Quach J, Williams PM, Mather JP. Phenylephrine, endothelin, prostaglandin F2alpha' and leukemia inhibitory factor induce different cardiac hypertrophy phenotypes in vitro. Endocrine 1998;9:45–55.

    Google Scholar 

  173. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–984.

    Google Scholar 

  174. Kunapuli P, Lawson JA, Rokach JA, Meinkoth JL, FitzGerald GA. Prostaglandin F2alpha (PGF2alpha) and the isoprostane, 8, 12-iso-isoprostane F2alpha-III, induce cardiomyocyte hypertrophy. Differential activation of downstream signaling pathways. J Biol Chem 1998;273:22442–22452.

    Google Scholar 

  175. Kaddoura S, Firth JD, Boheler KR, Sugden PH, Poole-Wilson PA. Endothelin-1 is involved in norepinephrine-induced ventricular hypertrophy in vivo. Acute effects of bosentan, an orally active, mixed endothelin ETA and ETB receptor antagonist. Circulation 1996;93:2068–2079.

    Google Scholar 

  176. Malpas SC, Groom AS, Head GA. Baroreflex control of heart rate and cardiac hypertrophy in angiotensin II-induced hypertension in rabbits. Hypertension 1997:29:1284–1290.

    Google Scholar 

  177. Shizukuda Y, Buttrick PM, Geenen DL, Borczuk AC, Kitsis RN, Sonnenblick EH. beta-adrenergic stimulation causes cardiocyte apoptosis: In_uence of tachycardia and hypertrophy. Am J Physiol 1998;275:H961–968.

    Google Scholar 

  178. Gerdes AM, Onodera T, Tamura T, Said S, Bohlmeyer TJ, Abraham WT, Bristow MR. New method to evaluate myocyte remodeling from formalin-fixed biopsy and autopsy material. J Card Fail 1998;4:343–348.

    Google Scholar 

  179. Haunstetter A, Izumo S. Apoptosis: Basic mechanisms and implications for cardiovascular disease. Circ Res 1998;82: 1111–1129.

    Google Scholar 

  180. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 1996;97:2891–2897.

    Google Scholar 

  181. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–1628.

    Google Scholar 

  182. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996;226:316–327.

    Google Scholar 

  183. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997;100:1363–1372.

    Google Scholar 

  184. Cigola E, Kajstura J, Li B, Meggs LG, Anversa P. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res 1997;231:363–371.

    Google Scholar 

  185. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 1998;101:1326–1342.

    Google Scholar 

  186. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999;99:2934–2941.

    Google Scholar 

  187. Sawyer DB, Fukazawa R, Arstall MA, Kelly RA. Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res 1999;84:257–265.

    Google Scholar 

  188. Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997;272:14860–14866.

    Google Scholar 

  189. Humphries DE, Sirokman G, Bing OH. Enhanced galactosyltransferase expression in the failing hearts of spontaneously hypertensive rats. Biochem Biophys Res Commun 1996;218:320–324.

    Google Scholar 

  190. Sirokman G, Humphries DE, Bing OH. Endogenous retroviral transcripts in myocytes from spontaneously hypertensive rats. Hypertension 1997;30:88–93.

    Google Scholar 

  191. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995;270:484–487.

    Google Scholar 

  192. Jordan BR. Large-scale expression measurement by hybridization methods: From high-density membranes to "DNA chips". J Biochem (Tokyo) 1998;124:251–258.

    Google Scholar 

  193. Johnston M. Gene chips: Array of hope for understanding gene regulation. Curr Biol 1998;8:R171–174.

    Google Scholar 

  194. Castellano M, Beschi M, Rizzoni D, Paul M, Bohm M, Mantero G, Bettoni G, Porteri E, Albertini A, Agabiti-Rosei E. Gene expression of cardiac beta 1-adrenergic receptors during the development of hypertension in spontaneously hypertensive rats. J Hypertens 1993;11:787–791.

    Google Scholar 

  195. Qi M, Shannon TR, Euler DE, Bers DM, Samare AM. Downregulation of sarcoplasmic reticulum Ca(21)-ATPase during progression of left ventricular hypertrophy. Am J Physiol 1997;272:H2416–2424.

    Google Scholar 

  196. Lijnen P, Petrov V. Renin-angiotensin system, hypertrophy and gene expression in cardiacmyocytes. J Mol Cell Cardiol 1999;31:949–970.

    Google Scholar 

  197. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 1997;100:1991–1999.

    Google Scholar 

  198. Hill MF, Singal PK. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 1996;148:291–300.

    Google Scholar 

  199. Balke CW, Shorofsky SR. Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovas Res 1998;37:290–299.

    Google Scholar 

  200. Lilly SL, ed. Pathophysiology of Heart Disease. Lea and Febiger, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, K., Bing, O.H. Changes in Gene Expression during the Transition from Compensated Hypertrophy to Heart Failure. Heart Fail Rev 4, 361–378 (1999). https://doi.org/10.1023/A:1009855720081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009855720081

Navigation