Skip to main content
Log in

Transition from Hypertrophy to Failure—Β-Adrenergic Desensitization of the Heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kannel WB, Castelli WP, McNamara PM, McKee PA, Feinleib M. Role of blood pressure in the development of the congestive heart failure. The Framingham Study. N Engl J Med 1972;287:781–787.

    Google Scholar 

  2. Ho KK, Pinxky JL, Kannel WB, Levy D. The epidemiology of heart failure. The Framingham Study. J Am Coll Cardiol 1993;22:6–13A.

    Google Scholar 

  3. Sagie A, Larson MG, Levy D. The natural history of borderline isolated systolic hypertension. N Engl J Med 1993;329: 1912–1917.

    Google Scholar 

  4. Nicholls MG. Hypertension, hypertrophy, heart failure. Heart 1996;(Suppl 3);76:92–97.

    Google Scholar 

  5. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975;56:56–64.

    Google Scholar 

  6. Katz AM. Cardiomyopathy of overload. N Engl J Med 1990; 322:100–110.

    Google Scholar 

  7. Samani NJ, Swales JD, Brammar WJ. A widespread abnormality of renin gene expression in the spontaneously hypertensive rat: Modulation in some tissues with the development of hypertension. Clin Sci 1989;77:629–636.

    Google Scholar 

  8. Castellano M, Böhm M. The cardiac-adrenoceptor-mediated signaling pathway and its alterations in hypertensive heart disease. Hypertension 1997;29:715–722.

    Google Scholar 

  9. Packer M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 1992;20:248–254.

    Google Scholar 

  10. Mujumdar VS, Tyagi SC. Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. J Hypertens 1999;17:261–270.

    Google Scholar 

  11. Mann DL, Yoshitoshi U, Kent RL, Vinciguerra S, Cooper IV G. Cellular versus myocardial basis for contractile dysfunction of hypertrophied myocardium. Circ Res 1991;68: 402–415.

    Google Scholar 

  12. Paul M, Stock P, Langheinrich M, Liefeldt L, Schönfelder G, Böhm M. Role of the cardiac renin-angiotensin system in human heart failure. Adv Exp Med Biol 1995;377:279–283.

    Google Scholar 

  13. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. J Clin Invest 1990;86: 1913–1920.

    Google Scholar 

  14. Bristow MR, Anderson FL, Port JD, Skerl L, Hershberger RE, Larrabee P, O'Connell JB, Renlund DG, Volkamm K, Murray J, et al. Differences in β-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 1991;84:1024–1039.

    Google Scholar 

  15. Böhm M, Gräbel C, Knorr A, Erdmann E. Treatment in hypertensive cardiac hypertrophy, I. Neuropeptide Y and β-adrenoceptors. Hypertension 1995;25:954–961.

    Google Scholar 

  16. Esler MG, Hasking GJ, Wilet IR, Leonard PK, Jennings GL. Noradrenaline release and sympathetic nervous system activity. J Hypertens 1988;3:117–119.

    Google Scholar 

  17. Kelm M, Schäfer S, Mingers S, Heydthausen M, Vogt M, Motz W, Strauer B. Left ventricularmass is linked to cardiac noradrenaline in normotensive and hypertensive patients. J Hypertens 1996;14:1357–1364.

    Google Scholar 

  18. Laragh JH, Sealey JE. The renin-angiotensin-aldosterone system in hypertension disorders: A key to two forms of arteriolar vasoconstriction and a positive clue to risk of vascular injury (heart attack and stroke) and prognosis. In: Laragh JH, Brenner BM, eds. Hypertension: Pathophysiology, Diagnosis and Management. New York: Raven Press, 1990:1329–1348.

    Google Scholar 

  19. Weber KT, Brilla CG. Factors associated with reactive and reparative fibrosis of the myocardium. Basic Res Cardiol 1992;87(Suppl 7):291–301.

    Google Scholar 

  20. Simpson P. Norepinephrine stimulated hypertrophy of cultured rat myocardial cells is an α1-adrenergic response. J Clin Invest 1983;72:732–738.

    Google Scholar 

  21. Schwartz K, de la Bastie D, Bouveret P, Oliviero P, Alonso S, Buckingham ME. α-Skeletal muscle actin mRNA's accumulate in hypertrophied adult rat hearts. Circ Res 1986;59:551–555.

    Google Scholar 

  22. Waspe LE, Ordahl CP, Simpson PC. The cardiac β-myosin heavy chain isogene is induced selectively in α1-adrenergic receptor stimulated hypertrophy of cultured rat heart myocytes. J Clin Invest 1990;85:1206–1214.

    Google Scholar 

  23. Packer M. Neurohormonal interactions and adaptations in congestive heart failure. Circulation 1998;77:721–730.

    Google Scholar 

  24. Cohn JN. The sympathetic nervous system in heart failure. J Cardiovasc Pharmacol 1989;14(Suppl 5):57–61.

    Google Scholar 

  25. Francis GS, Goldsmith SR, Ziesche SM, Cohn JN. Response of plasma norepinephrine and epinephrine to dynamic exercise in patients with congestive heart failure. Am J Cardiol 1982;49:1152–1159.

    Google Scholar 

  26. Swedberg K, Viquerat C, Rouleau JL, Roizen M, Atherton B, Parmley WW, Chatterjee K. Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol 1984;54:783–789.

    Google Scholar 

  27. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, Kubo SH, Rusin-Toretsky E, Yusuf S. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the studies of left ventricular dysfunction (SOLVD). Circulation 1990;82:1724–1729.

    Google Scholar 

  28. Benedict CR, Shelton B, Johnstone DE, Francis G, Greenberg B, Konstam M, Probstfield JL, Yusuf S. Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. Circulation 1996;94:690–694.

    Google Scholar 

  29. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 1997;95:169–175.

    Google Scholar 

  30. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 1995;26:1257–1263.

    Google Scholar 

  31. Levine TB, Olivari T, Cohn JN. Dissociation of the responses of the renin-angiotensin system and sympathetic nervous system to a vasodilator stimulus in congestive heart failure. Int J Cardiol 1986;12:165–172.

    Google Scholar 

  32. Böhm M, LaRosee K, Schwinger RHG, Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 1995;25:146–153.

    Google Scholar 

  33. Gudermann T, Nürnberg B, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: structure and function. J MolMed 1995;73:51–63.

    Google Scholar 

  34. Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 1991;60:653–688.

    Google Scholar 

  35. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional β3-adrenoceptor in the human heart. J Clin Invest 1996;98:556–562.

    Google Scholar 

  36. Krief S, Lönnqvist F, Raimbault S, Baude B, Van Spronsen A, Arner P, Strosberg AD, Ricquier D, Emorine LJ. Tissue distribution of β3-adrenergic receptor mRNAin man. J Clin Invest 1993;91:344–349.

    Google Scholar 

  37. Evans BA, Papaioannou M, Bonazzi VR, Summers RJ. Expression of β-adrenoceptor mRNA in rat tissues. Br J Pharmacol 1996;117:210–216.

    Google Scholar 

  38. Kaumann AJ, Molenaar P. Differences between the third cardiac β-adrenoceptor and the colonic β3-adrenoceptor in the rat. Br J Pharmacol 1996;118:2085–2098.

    Google Scholar 

  39. Meyer TE, Habener JF. Cyclic adenosine 3′,5′-monophosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins. Endocrine Rev 1993;14:269–290.

    Google Scholar 

  40. Hajjar R, Müller FU, Schmitz W, Schnabek P, Böhm M. Molecular aspects of adrenergic signal transduction in cardiac failure. Mol Med 1998;76:747–755.

    Google Scholar 

  41. Janknecht R, Hunter T. Transcription: A growing coactivator network: Nature 1996;383:22–23.

    Google Scholar 

  42. Goldspink PH, Russell B. The cAMP response element binding protein is expressed and phosphorylated in cardiac myocytes. Circ Res 1994;74:1042–1049.

    Google Scholar 

  43. Müller FU, Boknik P, Horst A, Knapp J, Linck B, Schmitz W, Vahlensieck U, Böhm M, Deng MC, Scheld HH. The cAMP response element binding protein is expressed and phosphorylated in the human heart. Circulation 1995;92: 2041–2043.

    Google Scholar 

  44. Müller FU, Boknik P, Knapp J, Lüss H, Neumann J, Vahlensieck U, Böhm M, Deng MC, Scheld HH, Schmitz W. Quantification of the cAMP response elementbinding protein in ventricular nuclear protein from failing and nonfailing human hearts. Biochem Biophys Res Comm1997;236: 351–354.

    Google Scholar 

  45. Müller FU, Boknik P, Knapp J, Lüss H, Neumann J, Vahlensieck U, Oetjen E, Schmitz W. A novel isoform of the cAMP response element modulator (CREM) in the human heart. Naunyn-Schmiedebergs Arch Pharmacol 1997;355(Suppl): R95.

    Google Scholar 

  46. Pippig S, Andexinger S, Lohse MJ. Sequestration and recycling of β2-adrenergic receptors permit receptor resensitization. Mol Pharmacol 1995;47:666–676.

    Google Scholar 

  47. Hadcock JR, Wang H, Malbon CC. Agonist-induced destabilization of ?-adrenergic receptor mRNA attenuation of glucocorticoid-induced up-regulation of ?-adrenergic receptors. J Biol Chem 1989;264:19928–19933.

    Google Scholar 

  48. Port JD, Huang LJ, Malbon CC. β-adrenergic agonists that down-regulate receptor mRNA up-regulate a Mr 35,000 protein( s) that selectively binds to β-adrenergic receptor mRNAs. J Biol Chem 1992;267:24103–24108.

    Google Scholar 

  49. Tholanikunnel BG, Granneman JG, Malbon CC. The Mr 35,000 β-adrenergic receptor mRNA-binding protein binds transcripts of G-protein-linked receptors which undergo agonist-induced destabilization. J Biol Chem 1995;270: 12787–12793.

    Google Scholar 

  50. Hosoda K, Feussner GK, Rydelek-Fitzgerald L, Fishman PH, Duman RS. Agonist and cyclic AMP-mediated regulation of β1-adrenergic receptor mRNA and gene transcription in rat C6 glioma cells. J Neurochem 1994;63:1635–1645.

    Google Scholar 

  51. Bouvier M, Leeb-Lundberg LMF, Benovic JL, Caron MG, Lefkowitz RJ. Regulation of adrenergic receptor function by phosphorylation. II. Effects of agonist occupancy on phosphorylation of α1-and β2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J Biol Chem 1997;262:3106–3113.

    Google Scholar 

  52. Lefkowitz RJ. G protein-coupled receptor kinases. Cell 1993;74:409–412.

    Google Scholar 

  53. Ungerer M, Parruti G, Böhm M, Puzicha M, DeBlasi A, Erdmann E, Lohse MJ. Expression of β-arrestins and β-adrenergic receptor kinases in the failing human heart. Circ Res 1994;74:206–213.

    Google Scholar 

  54. Pitcher JA, Inglese J, Higgins JB, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ. Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 1992;257:1264–1267.

    Google Scholar 

  55. Koch WJ, Inglese J, Stone WC, Lefkowitz RJ. The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J Biol Chem 1993;268: 8256–8260.

    Google Scholar 

  56. Inglese J, Koch WJ, Caron MG, Lefkowitz RJ. Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature 1992;359:147–150.

    Google Scholar 

  57. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science 1991;252:802–808.

    Google Scholar 

  58. Wankerl M, Schwartz K. Calcium transport proteins in the nonfailing and failing heart: Gene expression and function. J Mol Med 1995;73:487–496.

    Google Scholar 

  59. Yatani A, Brown AM. Rapid beta-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 1989;245:71–74.

    Google Scholar 

  60. Yatani A, Mattera R, Codina J, Graf R, Okabe K, Padrell E, Iyengar R, Brown AM, Birnbaumer L. The G protein-gated atrial K+ channel is stimulated by three distinct Gi alphasubunits. Nature 1998;336:680–682.

    Google Scholar 

  61. Itoh H, Toyama R, Kozasa T, Tsukamoto T, Matsuoka M, Kaziro Y. Presence of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human genomic DNAs. J Biol Chem 1988;263:6656–6664.

    Google Scholar 

  62. Böhm M, Kirchmayr R, Erdmann E. Myocardial Gi alphaprotein levels in patients with hypertensive cardiac hypertrophy, ischemic heart disease and cardiogenic shock. Cardiovasc Res 1995;30:611–618.

    Google Scholar 

  63. Strathmann MP, Simon MI. G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits. Proc Natl Acad Sci USA 1991;88:5582–5586.

    Google Scholar 

  64. Dohlman HG, Thorner. RGS proteins and signalling by heterotrimeric G proteins. J Biol Chem 1997;272:3871–3874.

    Google Scholar 

  65. Watson N, Linder ME, Druey KM, Kehrl JH, Blumer KJ. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature 1996;383: 172–175.

    Google Scholar 

  66. Tamirisa P, Blumer KJ, Muslin AJ. RGS4 inhibits G-protein signaling in cardiomyocytes. Circulation 1999;99:441–447.

    Google Scholar 

  67. Clapham DE, Neer EJ. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol 1997;37:167–203.

    Google Scholar 

  68. Taussig R, Iniguez-Lluhi JA, Gilman AG. Inhibition of adenylyl cyclase by Gi alpha. Science 1993;261:218–221.

    Google Scholar 

  69. Schnabel P, Camps M, Carozzi A, Parker PJ, Gierschik P. Mutational analysis of phospholipase C-beta 2. Identi~cation of regions required for membrane association and stimulation by guanine-nucleotide-binding protein beta gamma subunits. Eur J Biochem 1993;217:1109–1115.

    Google Scholar 

  70. Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature 1992;360:684–686.

    Google Scholar 

  71. Wickman KD, Iniguez-Lluhl JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME, Gilman AG, Clapham DE. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature 1994;368: 255–257.

    Google Scholar 

  72. Wedegaertner PB, Wilson PT, Bourne HR. Lipid modifications of trimeric G proteins. J Biol Chem 1995;270:503–506.

    Google Scholar 

  73. Tang WJ, Gilman AG. Adenylyl cyclases. Cell 1992;70: 869–872.

    Google Scholar 

  74. Tang WJ, Gilman AG. Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 1991;254: 1500–1503.

    Google Scholar 

  75. Bourne HR, Nicoll RA. Molecular machines integrate coincident synaptic signals. Cell/Neuron 1993;72/12:65–75.

    Google Scholar 

  76. Gao B, Gilman AG. Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci USA 1991;88:10178–10182.

    Google Scholar 

  77. Bristow MR, Ginsburg R, Minobe W, Cubiciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DE, Stinson EB. Decreased catecholamine sensitivity and β-adrenergic receptor density in failing human hearts. N Engl J Med 1982;307:205–211.

    Google Scholar 

  78. Brodde OE. β1-and β2-Adrenoceptors in the human heart: Properties, function, and alterations in chronic heart failure. Pharmacol Rev 1991;43:203–242.

    Google Scholar 

  79. Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptor in the failing human heart. Circulation 1993;87:454–463.

    Google Scholar 

  80. Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R, Ray PE, Feldman AM. Reduced β1-receptor messenger RNA abundance in the failing human heart. J Clin Invest 1993;92:2737–2745.

    Google Scholar 

  81. Böhm M, Reiger B, Schwinger RHG, Erdmann E. cAMP-concentrations, cAMP-dependent protein kinase activity and phospholamban in nonfailing and failing myocadium. Cardiovasc Res 1994;28:1713–1719.

    Google Scholar 

  82. Böhm M. Alterations of β-adrenoceptor-G-protein-regulated adenylyl cyclase in heart failure. Mol Cell Biochem 1995; 147:147–160.

    Google Scholar 

  83. Granneman JG, Lahners KN, Chaudhry A. Characterization of the human β3-adrenoceptor receptor gene. Mol Pharmacol 1993;44:264–270.

    Google Scholar 

  84. Strosberg AD Structure, function, and regulation of adrenoceptor receptors. Protein Sci 1993;2:1198–1209.

    Google Scholar 

  85. Manara L, Bianchetti A. The phenylethanoaminotetralines: New selective agonists for atypical β3-adrenoceptors. Trends Pharmacol Sci 1990;11:229–230.

    Google Scholar 

  86. Feldman AM, Jackson DG, Bristow MR, Cates AE, Van Dop C. Immunodetectable levels of the inhibitory guanine nucleotide-binding regulatory proteins in failing human heart. J Mol Cell Cardiol 1991;23:439–452.

    Google Scholar 

  87. Schnabel P, Böhm M, Gierschick P, Jakobs KH, Erdmann E. Improvement of cholera toxin-catalyzed ADP-ribosylation by endogenous ADP-ribosylation factor from bovine brain provides evidence for an unchanged amount of Gsa in failing human myocardium. J Mol Cell Cardiol 1990;22:73–82.

    Google Scholar 

  88. Insel PA. Ransnäs LA. G-proteins and cardiovascular disease. Circulation 1988;78:1511–1513.

    Google Scholar 

  89. Eschenhagen T. G proteins in the heart. Cell Biology International 1993;17:723–749.

    Google Scholar 

  90. Feldman AM, Cates AE, Bristow MR, Van Dop C. Altered expression of the α-subunits of G-proteins in failing human hearts. J Mol Cell Cardiol 1989;21:359–365.

    Google Scholar 

  91. Morris SA, Tanowitz H, Wittner M, Bilezilian JP. Pathophysiological insights into the cardiomyopathy of Chagas' disease. Circulation 1990;82:1900–1909.

    Google Scholar 

  92. Vatner DE, Vatner SF, Fujii AM, Homcy CJ. Loss of high affinity cardiac beta-adrenergic receptors in dogs with heart failure. J Clin Invest 1985;76:2259–2264.

    Google Scholar 

  93. Longabaugh JP, Vatner DE, Vatner SF, Homcy CJ. Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure overload left ventricular failure. J Clin Invest 1988;81:420–424.

    Google Scholar 

  94. Kessler PD, Cates AE, Van Dop C, Feldman AM. Decreased bioactivity of the guanine nucleotide-binding protein that stimulates adenylate cyclase in hearts from Cardiomyopathic Syrian hamsters. J Clin Invest 1989;84:244–252.

    Google Scholar 

  95. Neumann J, Scholz H, Döring V, Schmitz W, v. Meyerinck L, Kalmar P. Increase in myocardial Gi-proteins in heart failure. Lancet II 1988;936–937.

  96. Böhm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E. Increase of Giα in human hearts with dilated but not ischemic cardiomyopathy. Circulation 1990;82:1249–1265.

    Google Scholar 

  97. Hershberger RE, Feldman AM, Bristow MR. A1-adenosine receptor inhibition of adenylate cyclase in failing and nonfailing human myocardium. Circulation 1991;83:1343–1351.

    Google Scholar 

  98. Tanuma S, Kawashima K, Endo H. Eukaryotic mono (ADP) ribosyltransferase that ADP-ribosylates GTP-binding regulatory Giα protein. J Biol Chem 1988;263:5485–5489.

    Google Scholar 

  99. Watanabe Y, Imaizumi T, Misaki N, Iwankura K, Yoshiba H. Effects of phosphorylation of inhibitory GTP-binding protein by cyclic AMP-dependent protein kinase on ist ADP-ribosylation by pertussis toxin, islet activating protein. FEBS Lett 1988;236:372–374.

    Google Scholar 

  100. Goldsmith P, Gierschik P, Milligan G, Unson CG, Vinitsky R, Malech HL, Spiegel AM. Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophils and brain. J Biol Chem 1987;262:14683–14688.

    Google Scholar 

  101. Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H, Haverich A, Hirt S, Döring V, Kalmar P, Höppner W, et al. Increased messenger RNA level of the inhibitory G-protein α-subunit Giα-2 in human end-stage heart failure. Circ Res 1992;70:688–696.

    Google Scholar 

  102. Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H, Schulte am Esch J, Warnholz A. Long term β-adrenoceptormediated upregulation of Giα-and Goα-mRNA levels and pertussis toxin sensitive G-proteins in rat heart. Mol Pharmacol 1992a-:773–783.

  103. Müller FU, Boheler KR, Eschenhagen T, Schmitz W, Scholz H. Isoprenaline stimulates gene transcription of the inhibitory G-protein a-subunit Giα2 in rat heart. Circ Res 1993; 72:696–700.

    Google Scholar 

  104. Brown LA, Harding SE. The effect of pertussis toxin on β-adrenoceptor responses in isolated cardiac myocytes from noradrenaline-treated guinea pigs and patients with heart failure. Br J Pharmacol 1992;106:115–122.

    Google Scholar 

  105. Holmer SR, Eschenhagen T, Nose M, Riegger GAJ. Expression of adenylyl cyclase and G-protein beta subunit in endstage human heart failure. J Cardiac Failure 1996;2: 279–283.

    Google Scholar 

  106. Ishikawa Y, Sorota S, Kiuchi K, Shannon RP, Komamura K, Katsushika S, Vatner DE, Vatner SF, Homcy CJ. Downregulation of adenylylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest 1994;93: 2224–2229.

    Google Scholar 

  107. Böhm M, Diet F, Kemkes B, Erdmann E. Enhancement of the effectiveness of milrinone to increase force of contraction by stimulation of cardiac beta-adrenoceptors in the failing human heart. Klin Wochenschr 1988;66:957–962.

    Google Scholar 

  108. Feldman MD, Copelas L, Gwathmey JK, Philips P, Warren SE, Schoen FJ, Grossman W, Morgan JP. Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 1987;75:331–339.

    Google Scholar 

  109. De Champlain J. Pre-and postsynaptic adrenergic dysfunction in hypertension. J Hypertens 1990;8 (Suppl 7):S77-S85.

    Google Scholar 

  110. Esler M, Jennings G, Lambert A. Overflow of catecholamine neurotransmitters to the circulation: Source, fate and functions. Physiol Rev 1990;70:963–985.

    Google Scholar 

  111. Floras JS. Epinephrine and the genesis of hypertension. Hypertension 1992;19:1–18.

    Google Scholar 

  112. Hall JA, Petch MC, Brown MJ. Intracoronary injections of salbutamol demonstrate the presence of functional β2-adrenoceptors in the human heart. Circ Res 1989;65:546–553.

    Google Scholar 

  113. Böhm M, Castellano M, Flesch M, Maack C, Moll M, Paul M, Schiffer F, Zolk O. Chamber specific alterations of norepinephrine uptake sites in cardiac hypertrophy. Hypertension 1998;32:831–837.

    Google Scholar 

  114. Bertel O, Bühler FR, Kiowski W, Lutold BE. Decreased beta-adrenergic responsiveness as related to age, blood pressure and plasma catecholamines in patients with essential hypertension. Hypertension 1980;2:130–138.

    Google Scholar 

  115. Ito H, Tonai N, Hirakawa S. Estimated affinity of isoproterenol to cardiac chronotropic beta-receptor and of phenylephrine to vasoconstrictive alpha-receptor of the systemic resistence vessels in human bordeline hypertension. Jpn Circ J 1983;47:240–255.

    Google Scholar 

  116. Feldman RD. β-Adrenergic receptor alterations in hypertension— Physiological and molecular correlates. Can J Physiol Pharmacol 1987;65:1666–1672.

    Google Scholar 

  117. Brodde OE, Kretsch R, Ikezono K, Zerkowski HR, Reidemeister JC. Human β-adrenoceptors: relation of myocardial and lymphocyte β-adrenoceptor density. Science 1986;231: 1584–1585.

    Google Scholar 

  118. Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature (Lond) 1990;344:541–544.

    Google Scholar 

  119. Michel MC, Brodde OE, Insel PA. Peripheral adrenergic receptors in hypertension. Hypertension 1990;16:107–120.

    Google Scholar 

  120. Limas C, Limas CJ. Reduced number of β-adrenergic receptors in the myocardiuim of spontaneously hypertensive rats. Biochem Biophys Res Commun 1978;83:710–714.

    Google Scholar 

  121. Robberecht P, Winand J, Chatelain P, Poloczek P, Camus JC, de Neef P, Christophe J. Comparison of β-adrenergic receptors and the adenylate cyclase system with muscarinic receptors and guanylate cyclase activities in the heart of spontaneously hypertensive rats. Biochem Pharmacol 1981;30: 385–387.

    Google Scholar 

  122. Chatelain P, Waelbroeck M, Camus JC, de Neef P, Robberecht P, Roba J, Christophe J. Comparative effects of alpha-methyldopa, propanolol and hydralazine therapy on cardiac adenylate cyclase activity in normal and spontaneously hypertensive rats. Eur J Pharmacol 1981;72:17–25.

    Google Scholar 

  123. Yamada S, Ishima T, Tomita T, Hayashi M, Okada T, Hayashi E. Alterations in cardiac α-and β-adrenoceptors during the development of spontaneous hypertension. J Pharm Exp Ther 1984;228:454–460.

    Google Scholar 

  124. Upsher ME, Khairallah PA. β-Adrenergic receptors in rat myocardium during the development and reversal of hypertrophy and following chronic infusions of angiotensin II and epinephrine. Arch Int Pharmacodyn Ther 1985;274: 65–79.

    Google Scholar 

  125. Böhm M, Beuckelmann D, Diet F, Feiler G, Lohse MJ, Erdmann E. Properties of cardiac α-and β-adrenoceptors in spontaneously hypertensive rats. Naunyn-Schmiedeberg's Arch Pharmacol 1988;338:383–391.

    Google Scholar 

  126. Michel MC, Wang XL, Schlicker E, Goethert M, Beckeringh JJ, Brodde OE. Increased β2-adrenoceptor density in heart, kidney and lung of spontaneously hypertensive rats. J Autonom Pharmac 1987;7:41–51.

    Google Scholar 

  127. Böhm M, Castellano M, Paul M, Erdmann E. Cardiac norepinephrine, β-adrenoceptors and Gia-proteins in prehypertensive and hypertensive spontaneously hypertensive rats. J Cardiovasc Pharmacol 1994;23:980–987.

    Google Scholar 

  128. Castellano M, Beschi M, Rizzoni D, Paul M, Böhm M, Mantero G, Bettoni G, Porteri E, Albertini A, Agabiti-Rosei E. Gene expression of cardiac β1-adrenergic receptors during the development of hypertension in spontaneously hypertensive rats. J Hypertens 1993;11:787–791.

    Google Scholar 

  129. Bhalla RC, Sharma RV, Ramanathan S. Ontogenic development of isoprterenol subsensitivity of myocardial adenylate cyclase and β-adrenergic receptors in spontaneously hypertensive rats. Biochem Biophys Acta 1980;632:497–506.

    Google Scholar 

  130. Mukherjee A, Graham RM, Sagalowsky AI, Pettinger W, McCoy KE. Myocardial β-adrenergic receptors in the stroke-prone spontaneously hypertensive rats. J Mol Cell Cardiol 1980;12:1263–1272.

    Google Scholar 

  131. Blumenthal SJ, Mc Connaughey MM, Iams SG. Myocardial adrenergic receptors and adenylate cyclase in the developing spontaneously hypertensive rat. Clin Exp Hyper 1982;A4(6):883–901.

    Google Scholar 

  132. Mochizuki M, Ogawa K. Increase of cardiac β-adrenergic receptors in young spontaneously hypertensive rats. Jpn Heart J 1984;25:411–423.

    Google Scholar 

  133. Murakami T, Katada T, Yasuda H. Reduction in the activity of the stimulatory guanine nucleotide-binding protein in the myocardium of spontaneously hypertensive rats. J Mol Cell Cardiol 1987;19:199–208.

    Google Scholar 

  134. Limas C, Limas CJ. Cardiac β-adrenergic receptors in saltdependent genetic hypertension. Hypertension 1985;7: 760–766.

    Google Scholar 

  135. Michel MC, Kanczik R, Khmssi M, Knorr A, Siegl H, Beckeringh JJ, Brodde OE. Alpha-and beta-adrenoceptors in hypertension: I. Cardiac and renal alpha-1-, beta-1-and beta-2-adrenoceptors in rat models of acquired hypertension. J Cardiovasc Pharmacol 1989;13:421–431.

    Google Scholar 

  136. Böhm M, Gierschik P, Knorr A, Schmidt U, Weismann K, Erdmann E. Cardiac adenylyl cyclase, β-adrenergic receptors, and G-proteins in salt-sensitive hypertension. Hypertension 1993;22:715–727.

    Google Scholar 

  137. Castellano M, Paul M, Beschi M, Bachmann J, Rizzoni D, Porteri E, Bettoni G, Cinelli A, Ganten D, Agabiti-Rosei E. Gene regulation of β1-adrenergic receptor in genetically hypertensive rats. J Hypertens 1993;11(Suppl 5):S64-S65.

    Google Scholar 

  138. Woodcock EA, Funder JW, Johnston CI. Decreased cardiac β-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res 1979;45:560–565.

    Google Scholar 

  139. Ayobe MH, Tarazi RC. Reversal of changes in myocardial β-receptors and inotropic responsiveness with regression of cardiac hypertrophy in renal hypertensive rats (RHR). Circ Res 1984;54:125–134.

    Google Scholar 

  140. Woodcock EA, Johnston CI. Changes in tissue alpha-and beta-adrenergic receptors in renal hypertension in the rat. Hypertension 1980;2:156–161.

    Google Scholar 

  141. Vlachakis ND, Ransom F, Kogosov E, Woodcock E, Alexander N, Maronde RF. Sympathetic activity and cardiac adrenergic receptors in one-kidney, one-clip hypertension in rats. Hypertension 1984;6:654–659.

    Google Scholar 

  142. Gende OA, Mattiazzi A, Camillion MC, Pedroni P, Taquini C, Llambi HG, Cingolani HE. Renal hypertension inpairs inotropic isoproterenol effect without β-receptor changes. Am J Physiol 1985;249:H814-H819.

    Google Scholar 

  143. Böhm M, Gierschik P, Knorr A, Larisch K, Weismann K, Erdmann E. Desensitization of adenylate cyclase and increase of Giα in cardiac hypertrophy due to acquired hypertension. Hypertension 1992;20:103–112.

    Google Scholar 

  144. Yamada S, Yamamura HI, Roeske WR. Alterations in central and peripheral adrenergic receptors in deoxycorticosterone/ salt hypertensive rats. Life Sci 1980;27:2405–2416.

    Google Scholar 

  145. Limas CJ. Increased number of β-adrenergic receptors in the hypertrophied myocardium. Biochem Biophys Acta 1979;588:174–178.

    Google Scholar 

  146. Vatner DE, Kirby DA, Homcy CJ, Vatner SF. β-Adrenergic and cholinergic receptors in hypertension induced hypertrophy. Hypertension 1985;(Suppl I):I55-I60.

  147. Tamai J, Hor M, Kagiya T, Iwakura K, Iwai K; Kitabatake A, Watanabe Y, Yoshida H, Inoue M, Kamada T. Role of α1-adrenoceptor activity in progression of cardiac hypertrophy in guinea pig hearts with pressure overload. Cardiovasc Res 1989;23:315–322.

    Google Scholar 

  148. Ganguly PK, Lee SL, Beamish RE, Dhalla NS. Altered sympathetic system and adrenoceptors during the development of cardiac hypertrophy. Am Heart J 1989;118:520–525.

    Google Scholar 

  149. Matsui H, Makino N, Yano K, Nakanishi H, Hata T, Yanaga T. Modulation of adrenergic receptors during regression of cardiac hypertrophy. J Hypertens 1994;12:1353–1357.

    Google Scholar 

  150. Freissmuth M, Kraupp O, Hausleihner V, Tuisl E, Schütz W. Alterations of the glomerular β-adrenoceptor-linked adenylate cyclase in perinephritis hypertension. J Cardiovasc Pharmacol 1986;8:60–66.

    Google Scholar 

  151. Jones CR, Hamilton CA, Deighton N, Reid JL. Cardiac and lymphocyte β-adrenoceptors in perinephritis hypertension in the rabbit. J Cardiovasc Pharmacol 1986;8:562–566.

    Google Scholar 

  152. Giachetti A, Clark TL, Berti F. Subsensitivity of cardiac β-adrenoceptors in renal hypertensive rats. J Cardiovasc Pharmacol 1979;1:467–471.

    Google Scholar 

  153. Sharma RV, Kemp DB, Gupta RC, Bhalla RC. Properties of adenylate cyclase in the cardiovascular tissues of renal hypertensive rats. J Cardiovasc Pharmacol 1982;4:622–628.

    Google Scholar 

  154. Hurwitz ML, Rosendorff C. Cardiovascular adrenoceptor number and function in experimental hypertension in the baboon. J Cardiovasc Pharmacol 1985;7(Suppl 6): S172-S177.

    Google Scholar 

  155. Kurtz TW, Montano M, Chan L, Kabra P. Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: Implications for research with the spontaneously hypertensive rat. Hypertension 1989;13:188–192.

    Google Scholar 

  156. Ganten D, Lindpaintner, Ganten U, Peters J, Zimmermann F, Bader M, Mullins J. Transgenic rats: New animal models in hypertension research. Hypertension 1991;17:843–855.

    Google Scholar 

  157. Rapp JP, Wang SM, Dene H. A genetic polymorphism in the renin gene of Dahl rats cosegrates with blood pressure. Science 1989;243:542–544.

    Google Scholar 

  158. Böhm M, Gierschik P, Knorr A, Larisch K, Weismann K, Erdmann E. Role of altered G-protein expression in the regulation spontaneous hypertensive cardiomyopathy in rats. J Hypertens 1992;10:1115–1128.

    Google Scholar 

  159. Palmer GC, Greenberg S. Alterations in myocardial adenylate cyclase in spontaneously hypertensive rats. Pharmacology 1979;19:156–162.

    Google Scholar 

  160. Anand-Srivastava MB. Altered responsiveness of adenylate cyclase to adenosine and other agents in the myocardial sarcolemma and aorta of spontaneously hypertensive rats. Biochem Pharmacol 1988;37:3017–3022.

    Google Scholar 

  161. McLellan AR, Milligan G, Houslay MD, Connell JMC. G-proteins in experimental hypertension: A study of spontaneously hypertensive rat myocardial and renal cortical plasma membranes. J Hypertens 1993;11:365–372.

    Google Scholar 

  162. Kumano K, Khairallah PA. Adenylate cyclase activity during development and reversal of cardiac hypertrophy.J Mol Cell Cardiol 1986;17:537–548.

    Google Scholar 

  163. Thibault C, Anand-Srivastava MB. Altered expression of G-protein mRNA in spontaneously hypertensive rats. FEBS Lett 1992;313:160–164.

    Google Scholar 

  164. Anand-Srivastava MB. Enhanced expression of inhibitory guanine-nucleotide regulatory protein in spontaneously hypertensive rats. Biochem J 1992;288:79–85.

    Google Scholar 

  165. Anand-Srivastava MB, Picard S, Thibault C. Altered expression of inhibitory guanine-nucleotide regulatory proteins (Giα) in spontaneously hypertensive rats. Am J Hypertens 1991;4:840–843.

    Google Scholar 

  166. Michel C, Brodde OE, Insel PA. Are cardiac G-proteins altered in rat models of hypertension? J Hypertens 1993; 11:355–363.

    Google Scholar 

  167. Böhm M. Alterations of β-adrenoceptor-G-protein-regulated adenylyl cyclase in heart failure. Mol Cell Biochem 1995; 147:147–160.

    Google Scholar 

  168. Unverferth DV, Blanford M, Kates RE, Leier CV. Tolerance to dobutamine after a 72-hour continuous infusion. Am J Med 1980;69:262–266.

    Google Scholar 

  169. Böhm M, Kirchmayr R, Gierschik P, Erdmann E. Increase of myocardial inhibitory G-proteins in catecholamine-refractory septic shock or in septic multiorgan failure. Am J Med 1995;98:183–186.

    Google Scholar 

  170. Cho MC, Rao M, Koch WJ, Thomas SA, Palmiter RD, Rockman HA. Enhanced contractility and decreased β-adrenergic receptor kinase-1 in mice lacking endogenous norepinephrine and epinephrine. Circulation 1999;99: 2702–2707.

    Google Scholar 

  171. Engelhardt S, Hein L, Wiesmann, Lohse M. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc Natl Acad Sci 1999;96:7059–7064.

    Google Scholar 

  172. Bertrin B, Mansier P, Makeh I, Briand P, Rostene W, Swynghedauw B, Strosberg AD. Specific atrial overexpression of G protein coupled human β1-adrenoceptors in transgenic mice. Cardiovasc Res 1993;27:1606–1612.

    Google Scholar 

  173. Zolk O, Kilter H, Flesch M, Mansier P, Swynghedauw B, Schnabel P, Böhm M. Functional coupling of overexpressed β1-adrenoceptors in the myocardium of transgenic mice. Biochem Biophys Res Com 1998;248:801–805.

    Google Scholar 

  174. Rohrer DK, Desai RJ, Stevens ME, Regula DP, Barsh GB, Bernstein D, Kobilka BK. Targeted disruption of the moue β1-adrenergic receptor gene: Developmental and cardiovascular effects. Proc Natl Acad Sci 1996;93:7375–7380.

    Google Scholar 

  175. Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 1994;264:582–586.

    Google Scholar 

  176. Bond RA, Leff P, Johnson TD, Milano AC, Rockman HA, McMinn TR, Apparsundaram S, Hyek MF, Kenakin TP, Allen LF, Lefkowitz RJ. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 1995;374:272–275.

    Google Scholar 

  177. Samama P, Bond RA, Rockman HA, Milano CA, Lefkowitz RJ. Ligand-induced overexpression of a constitutively active β2-adrenergic receptor: Pharmacological creation of a phenotype in transgenic mice. Proc Natl Acad Sci 1997;94:137–141.

    Google Scholar 

  178. Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA, Eschenhagen T, Lefkowitz RJ, Koch WJ, Lakatta EG. Coupling of β2-adrenoceptor to Gi-proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999; 84:43–52.

    Google Scholar 

  179. Rockman HA, Hamilton RA, Jones LR, Milano CA, Mao 1, Lefkowitz RJ. Enhances myocardial relaxation in vivo in transgenic mice overexpressing the β2-adrenergic receptor is associated v reduced phospolamban protein. J Clin Invest 1996;97:1618–1623.

    Google Scholar 

  180. Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Koblika BK. Targeted disruption of the β2-adrenergic receptor gene. J Biol Chem 1999;274:16694–16700.

    Google Scholar 

  181. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. Cardiovascular and meraboloc alterations in mice lacking both β1-and β2-adrenergic receptors. J Biol Chem 1999;274:16701–16708.

    Google Scholar 

  182. Koch WJ, Rockman HA, Samana P, Hamilton RA, Bond RA, Milano CA, Lefkowitz RJ. Cardiac function uin mice overexpressing the β-adrenergic receptor kinase or a βARK inhibitor. Science 1995;268:1350–1353

    Google Scholar 

  183. Conner DA, Mathier MA, Mortensen RM, Christe M, Vatner SF, Seidman CE, Seidman JG. β-Arrestin 1 knockout mice appear normal but demonstrate altered cardiac responses to β-adrenergic stimulation. Circ Res 1997;81:1021–1026.

    Google Scholar 

  184. Rockman HA, Chien KR, Choi DJ, Iaxxarino G, Hunter JJ, Ross J Jr Lefkowitz RJ, Koch WJ. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci 1998;95:7000–7005.

    Google Scholar 

  185. Arber S, Hunter JJ, Ross J Jr, Hongo M, Perriad JC, Chien KR, Caroni P. MLP-deficient mive exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997;88:393–403.

    Google Scholar 

  186. Dorn II GW, Tepe NM, Lorenz JN, Koch WJ, Liggett SB. Low-and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gaq-overexpressing mice. Proc Natl Acad Sci 1999;96:6400–6405.

    Google Scholar 

  187. Roth DM, Gao MH, Lai NC, Drumm J, Dalton N, Zhou JY, Zhu J, Entrikin D, Hammond K. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 1999;99:3099–3102.

    Google Scholar 

  188. Reihsaus E, Innis M, MacIntyre N, Liggett SB. Mutations in the gene encoding for the β2-adrenergic receptor in normal and asthmatic subjects. Am J Resp Cell Mol Biol 1993;8:334–339

    Google Scholar 

  189. Green SA, Cole G, Jacinto M, Innis M, Liggett SB. A polymorphism of the human β2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 1993;268: 23116–23121.

    Google Scholar 

  190. Turki J, Lorenz JN, Green SA, Donnelly E, Jacinto M, Liggett SB. Myocardial signaling defects and impaired cardiac function of human β2-adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci 1996;93: 10483–10488.

    Google Scholar 

  191. Liggett SB, Wagoner E, Cradt LL, Hornung RW, Holt BD, McUntosh TC, Walsh RA. The Ile 164 β2-adrenergic receptor polymorphism asversely affects the outcome of congestive heart failure. J Clin Invest 1998;102:1534–1539.

    Google Scholar 

  192. Mason DA, Moore JD, Green SA, Liggett SB. A gain-offunction polymorphism in a G-protein coupling domain of the human β1-adrenergic receptor. J Biol Chem 1999;274: 12670–12674.

    Google Scholar 

  193. Tesson F, Charron P, Peuchmaurd M, Nicaud V, Cambien F, Tiret L, Poirier O, Desnos M, Julliéres Y, Amouyel P, Roizés G, Dorent R, Schwartz K, Komajda M. Characterization of a unique genetic variant in the β1-adrenoceptor gene and evaluation of its role in idiopathic dilated cardiomyopathy. J Mol Cell Cardiol 1999;31:1025–1032.

    Google Scholar 

  194. Limas CJ, Goldenberg IF, Limas C. Autoantibodies against β-adrenoceptors in human dilated cardiomyopathy. Circ Res 1989;86:1658–1663.

    Google Scholar 

  195. Wallukat G, Morwinski M, Kowal K, Förster A, Boewer V, Wollenberger A. Autoantibodies against the β-adrenergic receptor in human mypcarditis ans dilated cardiomyopathy: β-adrenergic agonism without desensitization. Eur Heart J 1991;12 (Suppl D):178–181.

    Google Scholar 

  196. Magnusson Y, Wallukat G, Waagstein F, Hjalmarson A, Hoebeke J. Autoimmunity in idiopathic dilatd cardiomyopathy. Circulation 1994;89ℐ60–2767.

    Google Scholar 

  197. Wallukat G, Wollenberger A, Morwinski R, Pitschner HF. Anti-β1-adrenoceptor autoantibodies with chronotropic activity from the serum of patients with dilated cardiomyopathy: Mapping of epitopes in the first and second extracellular loops. J Mol Cell Cardiol 1995;27:397–406.

    Google Scholar 

  198. Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F. Autoantibodies activating human β1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 1999;99:649–654.

    Google Scholar 

  199. Waagstein F, Caidahl K, Wallentin I, Bergh C, Hyalmarson A. Long term β-blockade in dilated cardiomyopathy. Effects of short-and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 1989;80:551–563

    Google Scholar 

  200. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert M. for the US Heart Failure Study Group. Effect of carvedilol on morbidity and mortality in chronic heart failure. N Engl J Med 1996;334:1349–1355

    Google Scholar 

  201. CIBIS-II Investigators and Committees. The cardiac insufficiency bisoprolol study II (CIBIS-II): A randomized trial. Lancet 1999;353:9–13.

    Google Scholar 

  202. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomized intervention trial in congestive heart failure (MERIT-HF). Lancet 1999;353:2001–2007.

    Google Scholar 

  203. Packer M. Neurohormonal interactions and adaptations in congestive heart failure. Circulation 1988;77:721–730

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M., Kouchi, I., Schnabel, P. et al. Transition from Hypertrophy to Failure—Β-Adrenergic Desensitization of the Heart. Heart Fail Rev 4, 329–351 (1999). https://doi.org/10.1023/A:1009851619173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009851619173

Navigation