Skip to main content
Log in

Left Ventricular Dysfunction in Diabetes

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Patients with diabetes mellitus have a greater morbidity and mortality from cardiovascular disease than patients without diabetes. Concomitant hypertension and diabetes are associated with even greater risk of coronary disease, atherosclerotic and peripheral vascular disease, and congestive heart failure. In addition, an independent left ventricular dysfunction (diabetic cardiomyopathy) exists in patients with diabetes that may manifest itself initially as abnormalities in diastolic function but ultimately in systolic function. Firm evidence for this outcome exists experimentally, and reversal of systolic and diastolic abnormalities has been noted experimentally. The Diabetes Control and Complications Trial (DCCT) indicated that intensive glycemic control ameliorates microvascular complication of neuropathy, proteinuria, and retinopathy. Little evidence exists for macrovascular complications or for left ventricular dysfunction. Preliminary results of a canine study of glycemic control and left ventricular function are presented. Clinical correlates of this study and its results are meager. Determination of the role that glycemic control plays with regard to left ventricular systolic function and congestive heart failure awaits carefully controlled and designed clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannel W. Lipids, diabetes, and coronary heart disease: insights from the Framingham study. Am Heart J 1985; 1–10:1110–1117.

    Google Scholar 

  2. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979;59:8–13.

    Google Scholar 

  3. Kessler II. Mortality experience of diabetic patients: a twenty-six year follow-up study. Am J Med 1971;51:715–724.

    Google Scholar 

  4. Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Mortality from coronary heart disease and stroke in relation to degre of glycaemia: the Whitehall study. Br Med J 1983; 287:867–870.

    Google Scholar 

  5. Jaffe AS, Spadaro JJ, Schechtman K, Roberts R, Geltman EM, Sobel BE. Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. Am Heart J 1984;108:31–37.

    Google Scholar 

  6. Smith JW, Marcus FI, Sereokman R, with the Multicenter Post Infarction Research Group. Prognosis of patients with diabetes mellitus after acute myocardial infarction. Am J Cardiol 1984;54:718–721.

    Google Scholar 

  7. Stone PH, Muller JE, Hartwell T, et al. The effect of diabetes mellitus on prognoses and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to adverse prognoses. J Am Coll Cardiol 1989;14:49–57.

    Google Scholar 

  8. Tukahashi N, Iwasaka T, Sugiura T, Hasegawa T, Tarumi M, Kinura Y, Onayama H, Inada M. Left ventricular regional function after acute anterior myocardial infarction in diabetic patients. Diabetes Care 1989;12:630–635.

    Google Scholar 

  9. Verdecchia P, Schullaci G, Borgioni C, et al. Adverse prognostic significance of concentric remodelling of the left ventricle in hypertensive patients with normal left ventricular mass. J Am Coll Cardiol 1995;25:871–878.

    Google Scholar 

  10. Sowers JR, Zemel MB. Clinical implications of hypertension in the diabetic patient. Am J Hypertens 1990;3:415–424.

    Google Scholar 

  11. Johnson MR. Heart failure in women, a special approach? J Heart Lung Transplant 1994;13:S130–S134.

    Google Scholar 

  12. Hara-Nakamura N, Kohara K, Suminoto T, Lim M, Hiwada T. Glucose intolerance exaggerates left ventricular hypertrophy and dysfunction in essential hypertension. Am J Hypertens 1994;12:1110–1114.

    Google Scholar 

  13. Factor SM, Bhan R, Minase T, et al. Hypertensive diabetic cardiomyopathy in the rat: an experimental model of human disease. Am J Pathol 1981;102:219–228.

    Google Scholar 

  14. Factor SM, Mianse T, Cho S, et al. Coronary microvascular abnormalities in the hypertensive diabetic rat. A primary cause of cardiomyopathy? Am J Pathol 1984;116:9–20.

    Google Scholar 

  15. Fein FS, Capasso JM, Aronson RS, et al. Combined renovascular hypertension and diabetes in rats: a new preparation of congestive cardiomyopathy. Circulation 1984:70:318–320.

    Google Scholar 

  16. Factor SM, Borczuk A, Charron MJ, Fein FS, van Hoeven K, Sonneblick EH. Myocardial alterations in diabetes and hypertension. Diabetes Res Clin Pract 1995;31:S133–S142.

    Google Scholar 

  17. Lagadic-Gossmann D, Buckler KJ, LePrigent K, Feuvray D. Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 1996;270:H1529–H1537.

    Google Scholar 

  18. Barbagallo M, Gupta RK, Resnick LM. Cellular ions in NIDDM: relation of calcium to hyperglycemia and cardiac mass. Diabetes Care 1996;19:1393–1398.

    Google Scholar 

  19. Vered Z, Battler A, Segal P, et al. Exercise induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol 1984;54:633–637.

    Google Scholar 

  20. Carlstrom S, Karelfors T. Haemodynamic studies on newly diagnosed diabetics before and after insulin treatment. Br Heart J 1970;32:355–358.

    Google Scholar 

  21. Ahmed SS, Jaferi GA, Narang RM, Regan TJ. Preclinical abnormality of left ventricular function in diabetes mellitus. Am Heart J 1975;89:153–158.

    Google Scholar 

  22. Zoneraich S, Zoneraich O, Rhee JJ. Left ventricular performance in diabetic patients without clinical heart disease. Evaluation by systolic time intervals and echocardiography. Chest 1977;72:748–751.

    Google Scholar 

  23. Friedman NE, Levitsky LL, Edidin DV, et al. Impaired myocardial performance in children with type I (insulin-dependent) diabetes mellitus. Diabetes 1980;29(Suppl):22.

    Google Scholar 

  24. Shapiro LM, Howat AP, Calter MM. Left ventricular function in diabetes mellitus. I Methology and prevalence and spectrum of abnormalities. Br Heart J 1981;45:122–128.

    Google Scholar 

  25. Alraksmen J, Ikaheimo M, Kaila J, Linnaluoto M, Takkunen J. Impaired left ventricular filling in young female diabetics. Acta Med Scand 1984;216:509–516.

    Google Scholar 

  26. Zarich SW, Arbuckle BE, Cohen LR, Roberts M, Nesto RW. Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol 1988;12:114–20.

    Google Scholar 

  27. Paillole C, Cahan M, Paycha F, et al. Procedure and significance of left ventricular filling abnormalities determined by Doppler echocardiography in young type I (insulin-dependent) diabetic patients. Am J Cardiol 1989;64: 1010–1016.

    Google Scholar 

  28. Raev DC. Which left ventricular function is impaired in the evaluation of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care 1994;17:633–639.

    Google Scholar 

  29. Robillen JF, Sadad JL, Jollien D, Morand P, Freychet P. Abnormalities suggestive of cardiomyopathy in patients with type 2 diabetes of relatively short duration Diabete Metabo 1994;20:473–480.

    Google Scholar 

  30. Rubler S, Sajadi MR, Araoye MA, Holford FD. Noninvasive estimation of myocardial performance in patients with diabetes. Effect of alcohol administration. Diabetes 1978;27: 127–134.

    Google Scholar 

  31. Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA 1974;229:1749–1754.

    Google Scholar 

  32. Factor SM, Okun EM, Minase T. Capillary microaneurysms in the human diabetic heart. N Engl J Med 1980;302: 384–388.

    Google Scholar 

  33. Zola B, Kaha J, Juni J, Vinite A. Abnormal cardiac function in diabetic patients with autonomic neuropathy in the absence of ischemic heart disease. J Clin Endocrinol Metab 1986;63:208–214.

    Google Scholar 

  34. Ceruti F, Vigo A, Sachetti C, Bessone A, Barattia G, Morella M, Casalucci D, Gastoldi L. Evaluation of left ventricular diastolic function in insulin dependent diabetic children by M-mode and Doppler echocardiography. Panminerva Med 1994;36:109–114.

    Google Scholar 

  35. Astorri E, Fiorina P, Contini GA, Albertini D, Magnate G, Astorri A, Lanfredini M. Isolated and pre-clinical impairment of left ventricular filling in insulin-dependent and non-insulin dependent diabetic patients. Clin Cardiol 1997;20: 536–540.

    Google Scholar 

  36. Galelta F, Piagessi A, Prattichizzo FA, Ceraido AM, Cosci S, Ginsh C. Cardiovascular effect of autonomic neuropathy in insulin dependent diabetes mellitus. Cardiologia 1995; 40:769–773.

    Google Scholar 

  37. Regan TJ, Ettinger PO, Kahan MI, et al. Altered myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Circ Res 1974;35:22–37.

    Google Scholar 

  38. Regan TJ, Wu DF, Yeh CK, et al. Myocardial composition and function in diabetes: the effects of chronic insulin use. Circ Res 1981;49:1268–1277.

    Google Scholar 

  39. Pogatsa G, Bihari-Varga M, Szinay G. Effect of diabetes therapy on the myocardium in expiremental diabetes. Acta Diabetol Lat 1979;16:129–138.

    Google Scholar 

  40. Fein FS, Kornstein LB, Strobeck JE, et al. Altered myocardial mechanics in diabetic rats. Circ Res 1980;47:L922–L933.

    Google Scholar 

  41. Fein F, Strobeck JE, Malhotra A, et al. Reversibility of diabetic cardiomyopathy with insulin in rats. Circ Res 1981;49:1251–1261.

    Google Scholar 

  42. Cameron NE, Colter MA, Robertson S. Contractile properties of cardiac papillary muscle in streptozocin–diabetic rats and effect of older reductase inhibition Diabetologia 1989;32:365–370.

    Google Scholar 

  43. Liu X, Takeda N, Dhalla NS. Myosin light chain phosphorylation in diabetic cardiomyopathy in rats. Metab Clin Exp 1997;46:71–75.

    Google Scholar 

  44. Roth DA, White CD, Hamilton CD, Hall JL, Stanley WC. Adrenergic desentization in the left ventricle from streptozotocin diabetic swine. JMol Cell Cardiol 1995;27:2315–2325.

    Google Scholar 

  45. Florsheim CE, Grupp IL, Matlib MA. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am J Physiol 1996;271:H192–H202.

    Google Scholar 

  46. Schaffer SW, Allo S, Punna S, White T. Defective response to CAMP-dependent protein kinase in non-insulin-dependent diabetic heart. Am J Physiol 1991;261:E369–E376.

    Google Scholar 

  47. Nobe S, Aomine M, Arita M, Ito S, Takaki R. Chronic diabetes mellitus prolongs action potential duration of rat ventricular muscles: circumstantial evidence for impaired Ca2+ channel. Cardiovasc Res 1990:24(5):381–389.

    Google Scholar 

  48. Yu JZ, Rodrigues B, McNeill JH. Intracellular calcium-levels are unchanged in the diabetic heart. Cardiovas Res 1997; 34:91–98.

    Google Scholar 

  49. Golfman LS, Takeda N, Dhalla NS. Cardiac membrane Ca(22) transportin alloxan induced diabetes in the rat. Diabetes Res Clin Pract 1996;31:S73–S77.

    Google Scholar 

  50. Gunasckaran S, Young JA, Tenner JE. Pharmacological study of isoproterenol and diabetic cardiomyopathies in rat right ventricular systolic function. Pharmacology 1993;46: 101–108.

    Google Scholar 

  51. Afzal N, Ganguly PK, Challa KS, et al. Beneficial effects of verapamil in diabetic cardiomyopathy. Diabetes 1988;37: 936–942.

    Google Scholar 

  52. Factor SM, Minase T, Cho S, Dominitz R, Sonneblick EH. Microvascular spasm in the cardiomyopathic Syrian hamster. A preventable cause of focal myocardial necrosis. Circulation 1982;66:342–354.

    Google Scholar 

  53. Eng C, Cho S, Factor SM, Sonnenblic EH, Krik ES. Myocardial micronecrosis produced by microsphere embolization. Role of an alpha adrenergic tonic influence on the coronary microcirculation. Circ Res 1984;54:74–82.

    Google Scholar 

  54. Feuvray D, Idell-Wwenger JA, Neely JR. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res 1979;44:322–329.

    Google Scholar 

  55. Haider B, Ahmed SS, Mosches CB, et al. Myocardial function and coronary blood flow response to acute ischemia in chronic canine diabetes. Circulation 1977;40:577–583.

    Google Scholar 

  56. Fein FS, Miller-Green B, Zola B, Sonnenblick E. Reversibility of diabetic cardiomyopathy with insulin in rabbits. Am J Physiol 1986;250:H108–H113.

    Google Scholar 

  57. Wavley A, Powell JM, Skepper IN. Capillary surface area is reduced and tissue thickness from capillaries to myocytes is increased in the left ventricle of streptozotocin diabetic rats. Diabetologia 1995;38:418–421.

    Google Scholar 

  58. Thompson EW. Quantitative analysis of myocardial structure in insulin-dependent diabetes mellitus: effects of immediate and delayed insulin replacement. Proc Soc Exp Bio Med 1994;205:294–305.

    Google Scholar 

  59. Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 1996;93:1905–1912.

    Google Scholar 

  60. Fein FS, Malhotra A, Miller-Green B, et al. Diabetic cardiomyopathy in rats: mechanical and biochemical response to different indulin doses. Am J Physiol 1984;247: H287–H294.

    Google Scholar 

  61. Dillman WH. Diabetes mellitus induced changes in cardiac myosin of the rat. Diabetes 1980;29:579–582.

    Google Scholar 

  62. Kita Y, Shimizu M, Sugihara N, Shimizu K, Hoshio H, Shibayama S, Takeda R. Correlation between histopathological changes and mechanical dysfunction in diabetic rat hearts. Diabetes Res Clin Pract 1991;11(3):177–188.

    Google Scholar 

  63. Schaffer SW, Ballard-Croft C, Boerth S, Allo SN. Mechanisms underlying depressed Na/Ca exchange activity in the diabetic heart. Cardiovasc Res 1997;34:129–136.

    Google Scholar 

  64. Garvey WT, Hardin T, Juhaszova M, Dominguez JH. Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 1993;264:H837–H844.

    Google Scholar 

  65. Stroedfer D, Schmidt T, Bretigel RG, Federlin K. Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transportation in mild diabetes in the rat. Acta Diabetol Lat 1995;32:235–243.

    Google Scholar 

  66. Ren J, Davidoff AJ, Diabetes rapidly induces contractile dysfunction in isolated ventricular myocytes. Am J Physiol 1997;272:148–158.

    Google Scholar 

  67. Davidoff AJ, Ran J. Low insulin and high glucose induce abnormal relaxation in cultured adult rat ventricular myocytes. Am J Physiol 1997;272:159–167.

    Google Scholar 

  68. Kaul N, Siveski-Iliskovic N, Hill M, Khaper N, Serevirator C, Singal PK. Probucal treatment reverses anti-oxidant and functional deficit in diabetic cardiomyopathy. Mol Cell Biochem 1996;160–161:283–288.

    Google Scholar 

  69. Wu DF, Haider B, Ahmed SS, et al. The effect of tolbutamide on the myocardium in experimental diabetes. Circulation 1977;55:200–205.

    Google Scholar 

  70. Lavine SJ, Prcevski P, Held AC, Johnson V. Experimental model of chronic global left ventricular secondary to left coronary microembolization. J Am Coll Cardiol 1991;18: 1794–1803.

    Google Scholar 

  71. Lavine SJ, Prcevski P. Effects of diabetes on left ventricular systolic function in the dysfunction left ventricle. J Am Coll Cardiol 1993;21:371A.

    Google Scholar 

  72. Hausdorf G, Reher V, Koepp P. Cardiomyopathy in childhood diabetes mellitus: incidence, time of onset and relation to metabolic control. Int J Cardiol 1988;19:225–236.

    Google Scholar 

  73. Mustonen J, Laask M, Vusitupa M, Sarlond H, Pyorala K, Rautio P, Kuikka J, Lansimies E. Improvement of left ventricular function after starting insulin treatment in patients with noninsulin dependent diabetes. Diabetes Res 1988; 9:27–30.

    Google Scholar 

  74. Hiramatsuk, O'Hara N, Shigematsu S, Aizawa T, Ishimhara F, Niwa H, Yamada T, Naka M, Monose A, Yoshizawak. Left ventricular filling abnormalities in non-insulin dependent diabetes and improvement by short term glycemic control. Am J Cardiol 1992;70:1185–1189.

    Google Scholar 

  75. Geruth S, Exogenous insulin administration and cardiovascular risk in noninsulin dependent and insulin dependent diabetes mellitus. Ann Intern Med 1996;124:104–109.

    Google Scholar 

  76. The DCCT Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the DCCT. Am J Cardiol 1995;75:894–903.

    Google Scholar 

  77. Calwell JA. The feasibility of intensive insulin management in non-insulin dependent diabetes mellitus. Implications of the Veterans Affairs Cooperative Study on glycemic control and complications in NIDDM. Ann Intern Med 1996;124: 131–135.

    Google Scholar 

  78. Laakso M. Glycemic control and the risk for coronary heart disease in patients with non-insulin dependent diabetes mellitus. Ann Intern Med 1996;1124:127–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavine, S.J. Left Ventricular Dysfunction in Diabetes. Heart Fail Rev 3, 249–258 (1999). https://doi.org/10.1023/A:1009847402684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009847402684

Navigation