Plant Ecology

, Volume 143, Issue 1, pp 107–122 | Cite as

GLM versus CCA spatial modeling of plant species distribution

  • Antoine Guisan
  • Stuart B. Weiss
  • Andrew D. Weiss

Abstract

Despite the variety of statistical methods available for static modeling of plant distribution, few studies directly compare methods on a common data set. In this paper, the predictive power of Generalized Linear Models (GLM) versus Canonical Correspondence Analysis (CCA) models of plant distribution in the Spring Mountains of Nevada, USA, are compared. Results show that GLM models give better predictions than CCA models because a species-specific subset of explanatory variables can be selected in GLM, while in CCA, all species are modeled using the same set of composite environmental variables (axes). Although both techniques can be readily ported to a Geographical Information System (GIS), CCA models are more readily implemented for many species at once. Predictions from both techniques rank the species models in the same order of quality; i.e. a species whose distribution is well modeled by GLM is also well modeled by CCA and vice-versa. In both cases, species for which model predictions have the poorest accuracy are either disturbance or fire related, or species for which too few observations were available to calibrate and evaluate the model. Each technique has its advantages and drawbacks. In general GLM will provide better species specific-models, but CCA will provide a broader overview of multiple species, diversity, and plant communities.

Constrained ordination Disturbances Logistic regression Model comparison Plant distribution Spatial modeling Spring Mountains (Nevada) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, M. P. & Smith T. M. 1989. A new model for the continuum concept. Vegetatio 83: 35-47.Google Scholar
  2. Austin, M. P., Nicholls, A. O., Doherty, M. D. & Meyers, J. A. 1994. Determining species response functions to an environmental gradient by means of a Beta-function. J. Veg. Sci. 5: 215-228Google Scholar
  3. Brzeziecki, B., Kienast, F. & Wildi, O. 1993. A simulated map of the potential natural forest vegetation of Switzerland. J. Veg. Sci. 4: 499-508.Google Scholar
  4. Burke, I. C., Reiners, W. A., & Olson, R. K. 1989. Topographic control of vegetation in a mountain big sagebrush steppe. Vegetatio 84: 77-86.Google Scholar
  5. Cohen, J. 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20: 37-46.Google Scholar
  6. Ferrer-Castán, D., Calvo, J. F., Esteve-Selma, M. A., Torres-Martinez, A. & Ramirez-Diaz, L. 1995. On the use of three performance measures for fitting species response curves. J. Veg. Sci. 6: 57-62.Google Scholar
  7. Fitzgerald, R. W. & Lees, B.G. 1992. The application of Neural Networks to the floristic classification of remote sensing and GIS data in complex terrain (I). Vol. 3, Pp. 2-10. In: Proceedings of the 6th Australian Remote Sensing Conference, Wellington, N.Z., November 1992.Google Scholar
  8. Frank, T. D. 1988. Mapping Dominant Vegetation Communities in the Colorado Rocky Mountain Front Range with Landsat Thematic mapper and Digital Terrain Data. Photogr. Eng. 54: 1727-1734.Google Scholar
  9. Franklin, J. 1995. Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Prog. Phys. Geog. 19: 474-499.Google Scholar
  10. Gauch, H.G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.Google Scholar
  11. Gottfried, M., Pauli, H. & Grabherr, G. 1998. Predictions of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arctic Alpine Res. 30: 207-221.Google Scholar
  12. Greenacre, M. J. 1984. Theory and Applications of Correspondence Analysis. Academic Press, London.Google Scholar
  13. Guisan, A. 1997. Distribution de taxons végétaux dans un environnement alpin: Application de modélisations statistiques dans un système d'information géographique. Thèse de doctorat présenté à la Faculté des Sciences de l'Université de Genève (PhD Dissertation, University of Geneva). No 2892. 186 pp. C annexes and maps.Google Scholar
  14. Guisan, A., Theurillat, J.-P. & Kienast, F. 1998. Using static modeling to predict potential distributions of species in an alpine environment. J. Veg. Sci. 9: 65-74.Google Scholar
  15. Heikkinen, R. K. 1996. Predicting patterns of vascular plant species richness with composite variables: a meso-scale study in Finnish Lapland. Vegetatio 126: 151-165.Google Scholar
  16. Hetrick, W. A., Rich, P. M, Barnes, F. J., & Weiss, S. B. 1993. GIS-based solar radiation flux models. Pp. 132-143. In: American Society for Photogrammetery and Remote Sensing Technical Papers. Vol. 3, GIS photogrammetry, and modeling. Hill, M. O. 1974. Correspondence analysis: a neglected multivariate method. Appl. Stat. 23: 340-354.Google Scholar
  17. Hill, M. O. 1991. Patterns of species distribution in Britain elucidated by canonical correspondence analysis. J. Biog. 18: 247-255.Google Scholar
  18. Huisman, J., Olff, H. & Fresco, L. M. F. 1993. A hierarchical set of models for species response analysis. J. Veg. Sci. 4: 37-46.Google Scholar
  19. Hutchinson, M. F. & Bischof, R. J. 1983. A new method for estimating the spatial distribution of mean seasonal and annual rainfall applied to Hunter Valley, New South Wales. Austral. Meteorol. Mag. 31: 179-184.Google Scholar
  20. Jongman, R. H. G., Ter Braak, C. J. F. & van Tongeren, O. F. R. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge UK.Google Scholar
  21. Korzukhin, M. D., Ter-Mikaelian, M. & Wagner, R. G. 1996. Process versus empirical models: which approach for forest ecosystem managementčan. J. For. Res. 26: 879-887.Google Scholar
  22. Lanner, R. M. 1983. Trees of the Great Basin: A Natural History. University of Nevada Press, Reno, NV.Google Scholar
  23. Lenihan J. M. 1993. Ecological responses surfaces for north American tree species and their use in forest classification. J. Veg. Sci. 4: 667-680.Google Scholar
  24. McCullagh, P. & Nelder, J. A. 1983. Generalized Linear Models. Monographs on Statistics and Applied Probability, Chapman and Hall, London.Google Scholar
  25. Monserud, R. A. & Leemans, R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecol. Modelling 62: 275-293.Google Scholar
  26. Nachlinger, J. & G. A. Reese. 1996. Plant community classification of the Spring Mountains National Recreation Area, Clark and Nye Counties, Nevada. Unpublished report on file with Toiyabe National Forest, Spring Mountains National Recreation Area, Las Vegas, NV. 104 pp.+ appendix.Google Scholar
  27. Nicholls, A. O. 1989. How to make biological surveys go further with generalized linear model. Biol. Conserv. 50: 51-75.Google Scholar
  28. Oksanen, J. 1997.Why the beta-function cannot be used to estimate skweness of species responses. J. Veg. Sci. 8: 147-152.Google Scholar
  29. Palmer, M. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215-2230.Google Scholar
  30. Saetersdal, M. & Birks, H. J. B. 1997. A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. J. Biog. 24: 127-152.Google Scholar
  31. Shao, G. & Halpin, P. N. 1995. Climatic controls of eastern North American coastal tree and shrub distributions. J. Biog. 22: 1083-1089.Google Scholar
  32. Skidmore, A. K., Gauld, A. & Walker, P. 1996. Classification of Kangaroo habitat distribution using three GIS models. Int. J. Geographical Information System 10: 441-454.Google Scholar
  33. Ter Braak C. J. F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69-77.Google Scholar
  34. Ter Braak, C. J. F. 1988. CANOCO: an extension of DECORANA to analyze species-environment relationships Vegetatio 75: 159-160.Google Scholar
  35. Ter Braak, C. J. F. & Smilauer, P. 1998. CANOCO Reference Manual and User's Guide to CANOCO for Windows. Software for Canonical Community Ordination (version 4). Centre for Biometry Wageningen (Wageningen, NL) and Microcomputer Power, Ithaca NY, USA, 352 pp.Google Scholar
  36. Walker, P. A. & Moore, D. M. 1988. SIMPLE: an inductive modeling and mapping tool for spatially-oriented data. Int. J. Geog. Inf. System 2: 347-363.Google Scholar
  37. Walker, P. A. & Cocks, D. 1991. HABITAT: a procedure for modeling a disjoint environmental envelope for a plant or animal species. Global Ecol. Biog. Letters 1: 108-118.Google Scholar
  38. Walker, R. E., Stoms, D. M., Davis, F. W. & van Wagtendonk, J. 1992. Modeling potential natural vegetation from a topographic gradient in the southern Sierra Nevada, California. Pp. 794-803. In: Proceedings GIS/LIS-92. Bethesda, MD: ASPRS. Weisberg, S. 1980. Applied Linear Regression. John Wiley and Sons, New York.Google Scholar
  39. Yee, T. W. & Mitchell, N. D. 1991. Generalized additive models in plant ecology. J. Veg. Sci. 2: 587-602.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Antoine Guisan
    • 1
  • Stuart B. Weiss
    • 2
  • Andrew D. Weiss
    • 2
  1. 1.Botanical CenterUniversity of GenevaGenevaSwitzerland
  2. 2.Center for Conservation Biology, Department of Biological SciencesStanford UniversityUSA

Personalised recommendations