Skip to main content
Log in

An Elementary Approach to an Eigenvalue Estimate for Matrices

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

A celebrated result of Johnson, Maurey, König and Retherford from 1977 states that for \(2 \leqslant p < \infty \) every complex \(n \times n\) matrix \(T = (\tau _{ij} )_{i,j} \) satisfies the following eigenvalue estimate:

$$\left( {\sum\limits_{i = 1}^n {\left| {\lambda _i \left( T \right)} \right|^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} \leqslant \left( {\sum\limits_{j = 1}^n {\left( {\sum\limits_{i = 1}^n {\left| {\tau _{ij} } \right|^{p'} } } \right)} {p \mathord{\left/ {\vphantom {p {p'}}} \right. \kern-\nulldelimiterspace} {p'}}} \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} \cdot $$

Based on the concept of entropy numbers and a simple product trick we give a selfcontained elementary proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carl, B.: Entropy numbers, s-numbers and eigenvalue problems, J. Funct. Anal. 41, (1981) 290–306.

    Google Scholar 

  2. Carl, B.: Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces, Ann. Inst. Fourier. Grenoble 35(3), (1985) 79–118.

    Google Scholar 

  3. Carl, B. and Stephani, I.: Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Mathematics 98, 1990.

  4. Carl, B. and Triebel, H.: Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators, Math. Ann. 251, (1980) 129–133.

    Google Scholar 

  5. Defant, M. and Junge, M.: Some estimates on entropy numbers, Israel J. Math. 74, (1991) 323–335.

    Google Scholar 

  6. Johnson, W.B., König, H., Maurey, B. and Retherford, J.R.: Eigenvalues of p-summing and ℓp-type operators in Banach spaces, J. Funct. Analysis 32, (1979) 353–380.

    Google Scholar 

  7. König, H.: Eigenvalue Distribution of Compact Operators, Birkhäuser, 1986.

  8. König, H. and Weiss, L.: On the eigenvalues of order bounded integral operators, Integral Equations Operator Theory 6, (1983) 706–729.

    Google Scholar 

  9. Pietsch, A.: Eigenvalues of absolutely r-summing operators; in: Barroso (ed.), Aspects of Mathematics and its Applications Elsevier, 1986, 607–617.

  10. Pietsch, A.: Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics 13, 1987.

  11. Pisier, G.: Remarques sur un résultat non publié de B. Maurey, Sem. d'Analyse Fonctionelle 1980/81 Exp. V.

  12. Schur, I.: Ñber die charakteristischenWurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Ann. 66, (1909) 488–451.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carl, B., Defant, A. An Elementary Approach to an Eigenvalue Estimate for Matrices. Positivity 4, 131–141 (2000). https://doi.org/10.1023/A:1009838325440

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009838325440

Navigation