Skip to main content
Log in

Metabolic Causes of Low Output Syndrome in Patients with Cyanotic Heart Disease after Cardiac Surgery

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

This article reviews antioxidant and aerobic metabolism of the cyanotic myocardium. Interventions are described which will increase myocardial aerobic capacity and minimize ischemic and oxyradical injury to the cyanotic TOF myocardium during corrective cardiac surgery to enhance post-operative contractile function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohler J, Silverman NA, Levitsky S, Pavel DG, Eckner FA, Fang RB. A model of cyanotic heart disease: Functional, pathological and metabolic sequelae in the immature canine heart. J Surg Res 1984;37:309–313.

    Google Scholar 

  2. Bernstein D, Teitel D, Sidi D, Heymann MA, Rudolph AM. Redistribution or regional blood flow and oxygen delivery in experimental cyanotic heart disease in newborn lambs. Ped Res 1987;22:398–393.

    Google Scholar 

  3. Sadeghi AM, Breda MA, Laks H, Chang PA, Laidig CA, Wu A, Bhuta S, Drinkwater DC. Circulation 1988;78:(Suppl III):III-158–III-163.

    Google Scholar 

  4. Itoi T, Huang L, Lopaschuk GD. Glucose use in neonatal rabbit hearts reperfused after global ischemia. Am J Physiol 1993;265:H427–H433

    Google Scholar 

  5. Silverman NA, Kohler J, Levitsky S, Pavel DG, Fang RB, Feinberg H. Chronic hypoxemia depresses global ventricular function and predisposes to the depletion of high-energy phosphates during cardioplegic arrest: Implications for surgical repair of cyanotic congential heart defects. Ann Thorac Surg 1984;37:304–308.

    Google Scholar 

  6. Burrows FA, Williams WG, Teoh KH, Wood AE, Burns J, Edmonds J, Barker GA, Trustler GA, Weisel RD. Myocardial performance after repair of congenital cardiac defects in infants and children. Response to volume loading. J Thorac Cardiovasc Surg 1988;96:548–556.

    Google Scholar 

  7. Plunkett MD, Hendry PJ, Anstadt MP, Camporesi EM, Armato MT, St. Louis JD, Lowe JE. Chronic hypoxia induces adaptive metabolic changes in the neonatal myocardium. J Thorac Cardiovasc Surg 1996;112:8–13.

    Google Scholar 

  8. Reddy VM, Liddicoat JR, McElhinney DB, Brook MM, Stanger P, Hanley FL. Routine primary repair of teralogy of Fallot in neonates and infants less than 3 months of age. Ann Thorac Surg 1995;60(6 Suppl):S592–S596.

    Google Scholar 

  9. del Nido PJ, Mickle DAG, Wilson GJ, Benson LN, Coles JG, Trusler GA, Williams WG. Evidence of myocardial free radical injury during elective repair of tetralogy of Fallot. Circulation 1987;76 (Suppl V):V-174–V-179.

    Google Scholar 

  10. Morita K, Ihnken K, Buckberg GD. Studies of hypoxemic/reoxygenation injury: with aortic clamping. XIII. Delay of cardiac reoxygenation damage in the presence of cyanosis: A new concept of controlled cardiac reoxygenation. J Thorac Cardiovasc Surg 1995;110(4 pt. 2):1265–1273.

    Google Scholar 

  11. del Nido PJ, Mickle DAG, Wilson GJ, Benson LN, Weisel RD, Coles JG, Trusler GA, Williams WG. Inadequate myocardial protection with cold cardioplegic arrest during repair of tetralogy of Fallot. J Thorac Cardiovasc Surg 1988;95:223–229.

    Google Scholar 

  12. Li R-K, Mickle DAG, Weisel RD, Tumiati LC, Jackowski G, Wu T-W, Williams WG. Effect of oxygen tension on the anti-oxidant enzyme activities of tetralogy of Fallot ventricular myocytes. J Mol Cell Cardiol 1989;21:567–575.

    Google Scholar 

  13. Teoh KH, Mickle DAG, Weisel RD, Li R-K, Tumiati LC, Coles JG, Williams WG. Effect of oxygen tension and cardiovascular operations on the myocardial antioxidant enzyme activities in patients with tetralogy of Fallot and aorta-coronary bypass. J Thorac Cardiovasc Surg 1992;104:159–164.

    Google Scholar 

  14. Li R-K, Weisel RD, Williams WG, Mickle DAG, Oxyradicalinduced antioxidant and lipid changes in cultured human cardiomyocytes. Am J Physiol 1994;266(35):H2204–H2211.

    Google Scholar 

  15. Moscow JA, Morrow CS, He R, Mullenbach GT, Cowan KH. Structure and function of the 5-_anking region of the human cytosolic selenium-dependent glutathione peroxidase gene (hgpx1). J Biol Chem 1992;267:5949–5958.

    Google Scholar 

  16. Butler JA, Whanger D, Tripp MJ, Blood selenium and glutathione peroxidase activity in pregnant women: Comparative assays in primates and other animals. Am J Clin Nutr 1982;36:15–23.

    Google Scholar 

  17. Spallholz JE, Boylan LM, In: Peroxidases in Chemistry and Biology. Everse J, Everse KE, Grisham MB, eds. Boca Raton, FL: CRC Press, 1991;259–291.

    Google Scholar 

  18. Mickle DAG, Weisel RD, Burton GW, Ingold KU, Effect of orally administered alpha-tocopheryl acetate on human myocardial alpha-tocopherol levels. Cardiovasc Drugs Ther 1991;5:309–312.

    Google Scholar 

  19. Yau TM, Weisel RD, Mickle DAG, Burton GW, Ingold KU, Ivanov J, Mohabeer MK, Tumiati LC, Carson S. Vitamin E for coronary bypass surgery: A prospective, double blind, randomized trial. J Thorac Cardiovasc Surg 1994; 108:302–310.

    Google Scholar 

  20. Chu F-F, Esworthy RS, Akman S, Doroshow JH, Modulation of glutathione peroxidase expression by selenium: Effect on human MCF-7 breast cancer tranfectants expression a cellular glutathione peroxidase cDNA and doxorubicin-resistant MCF-7 cells. Nuc Acids Res 1990;18:1531–1539.

    Google Scholar 

  21. Toyoda H, Himeno SI, Imura N. regulation of glutathione peroxidase mRNA level by dietary selenium manipulation. Biochem Biophys Acta 1990;1049:213–215.

    Google Scholar 

  22. Hatori N, Pehrsson SK, Clyne N, Hansson G, Hofman-Bang C, Marklund SL, Rydèn L, Sjöqvist PO, Svensson L. Acute cobalt exposure and oxygen radical scavengers in the rat myocardium. Biochem Biophys Acta 1993;181:257–260.

    Google Scholar 

  23. Rahman IU, Clerch LB, Massaro D. Rat lung antioxidant enzyme induction by ozone. Am J Physiol 1991;260: L412–418.

    Google Scholar 

  24. Cowan DB, Weisel RD, Williams WG, Mickle DAG. The regulation of glutathione peroxidase gene expression by oxygen tension in cultured human cardiomyocytes. J Mol Cell Cardiol 1992;24:243–433.

    Google Scholar 

  25. Cowan DB, Weisel RD, Williams WG, Mickle DAG. Identification of oxygen responsive elements in the 5-_anking region of the human glutathione peroxidase gene. J Biol Chem 1993;268:26904–26910.

    Google Scholar 

  26. Biadasz-Clerch L, Wright A, Chung DJ. Evidence that glutathione peroxidase RNA and Manganese superoxide dismutase RNA bind the same protein. Biochem Biophys Res Comm 1996;222:590–594.

    Google Scholar 

  27. Rani P, Lalitha K. Evidence for altered structure and impaired mitochondrial electron transport function in selenium deficiency. Biol Trace Elem Res 1996;51:225–234.

    Google Scholar 

  28. Schulze-Osthoff K, Los M, Baeuerle PA. Redox signalling by transcription factors NF-?? and AP-1 in lymphocytes. Biochem Pharmacol 1995;50:735–741.

    Google Scholar 

  29. Pognonec P, Kato H, Roeder RG. The helix-loop helix/ leucine zipper repeat transcription factor USF can functionally regulated in a redox-dependent manner. J Biol Chem 1993;267:24563–24567.

    Google Scholar 

  30. Bannister AJ, Cook A, Kouzarides T. In vitro DNA-binding activity of Fos/Jun and BZLF1 but not C/EBP is affected by redox changes. Oncogene 1991;6:1243–1250.

    Google Scholar 

  31. Huang, RP Adamson ED. Characterization of the DNAbinding properties of the early growth response-1 (Erg-1) transcription factor: Evidence for modulation by a redox mechanism. DNA Cell Biol 1993;12:265–273.

    Google Scholar 

  32. Sanchez-Garcia I, Rabbitt S. Redox regulation of in vitro DNA-binding activity by the homeodomain of isi-1 protein. J Mol Biol 1993;231:945–949.

    Google Scholar 

  33. Wasylyk C, Wasylyk B. Oncogenic conversion of Ets affects redox regulation in vivo and in vitro. Nuc Acids Res 1993;21:523–529.

    Google Scholar 

  34. Mela L, Goodwin CW, Miller LD. In vivo control of mitochondrial enzyme concentrations and activity by oxygen. Am J Physiol 1976;231(6):1811–1816.

    Google Scholar 

  35. Lange PE, Onnasch DGW, Bernhard A, Heintzen P. Left and right ventricular adaption to right ventricular overload before and after surgical repair of tetrology of Fallot. Am J Cardiol 1982;50:786–794.

    Google Scholar 

  36. Zhao HX, Miller DC, Reitz BA, Shumway NE. Surgical repair of tetrology of Fallot. J Thorac Cardiovasc Surg 1985;89:204–220.

    Google Scholar 

  37. Robinson BH, MacKay N, Goodyer D, Lanchaster G. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacticacidemia.AmJ Hum Genet 1985;37:938–946.

    Google Scholar 

  38. Schillace R, Preiss T, Lightowlers RN, Capaldi RA. Developmental regulation of tissue-specific isoforms of subunit Vla of beef cytochrome c oxidase. Biochim Biophys Acta 1994;1188:391–397.

    Google Scholar 

  39. Budinger GRS, Chandel N, Shao ZH, Li CQ, Melmed A, Becker LB, Schumacker PT. Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes. Am J Physiol 1996;270:L44–L53.

    Google Scholar 

  40. Chévez JC, Pichiule P, Boero P, Arregui A. Reduced mitochondrial respiration in mouse cerebral cortex during chronic hypoxia. Neurosci Lett 1995;193:169–172.

    Google Scholar 

  41. Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 1988;263:2712–2718.

    Google Scholar 

  42. Chandel N, Budinger GRS, Kemp RA, Schumacker PT. Inhibition of cytochrome-c oxidase activity during prolonged hypoxia. Am J Physiol 1995;268:L918–L925.

    Google Scholar 

  43. Schumacker PT, Chandel N, Agusti AGN. Oxygen conformance of cellular respiration in hepatocytes. Am J Physiol 1993;265:L395–L402.

    Google Scholar 

  44. Asson-Batres MA, Hare JF. Effect of oxygen on the synthesis and assembly of mitochondrial encoded subunits of cytochrome oxidase and cytochrome bc1 in mouse embryo fibroblasts. J Biol Chem 1991;266:9932–9938.

    Google Scholar 

  45. Weiss J, Hiltbrand B. Functional comparmentalization of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 1985;75:436–447.

    Google Scholar 

  46. Reed LJ. Multienzyme complexes. Acc Chem Res 1974;7: 40–46.

    Google Scholar 

  47. Patel M, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J 1990; 4:3224–3233.

    Google Scholar 

  48. Robinson BH. Lactic acidemia (disorders of pyruvate carboxylase, pyruvate dehydrogenase). In: The Metabolic and Molecular Basis of Inherited Disease, 7th Ed. Scriver C R, Beaudet A L, Sly WS, Valle D, eds. New York: McGraw-Hill Inc, 1995.

    Google Scholar 

  49. Ravindran S, Radke GA, Guest JR, Roche TE. Lipoyl domain–based mechanism for the integrated feedback control of pyruvate dehydrogenase complex by enhancement of pyruvate dehydrogenase kinase activity. J Biol Chem 1996;271(2):653–662.

    Google Scholar 

  50. Reed LJ. Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle. Curr Top Cell Reg 1981;18:95–106.

    Google Scholar 

  51. Whitehouse S, Randle PJ. Activation of pyruvate dehydrogenase in perfused rat heart by dichloroacetate. Biochem J 1973;134:651–653.

    Google Scholar 

  52. Whitehouse S, Cooper RH, Randle PJ. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 1974;141:761–774.

    Google Scholar 

  53. Kadenbach B, Kuhn-Nentig L, Buge U. Evolution of a regulatory enzyme: Cytochrome c oxidase (complex IV). Curr Topics Bioenerg 1987;15:113–161.

    Google Scholar 

  54. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaona R, Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 1995;269: 1069–1064.

    Google Scholar 

  55. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. The whole structure of the 13 subunit oxidized cytochrome c oxidase at 2.8 A. Science 1996;272:1136–1141.

    Google Scholar 

  56. Wielburski A, Nelson BD. Heme a induces assembly of rat liver cytochrome c oxidase subunits I-II in isolated mitochondria. FEBS Lett 1984;177:291–294.

    Google Scholar 

  57. Huther F-J, Kadenbach B. Specific effects of ATP on the kinetics of reconstituted bovine heart cytochrome c oxidase. FEBS Lett 1986;207:89–94.

    Google Scholar 

  58. Heerdt BG, Augenlicht LH. Effect of fatty acids on the expression of genes encoding subunits of cytochrome c oxidase and cytochrome c oxidase activity in HT29 human colonic adencarcinoma cells. J Biol Chem 1991;266:19120–19126.

    Google Scholar 

  59. Ishibe N, Lynch SR, Copeland RA. The pH dependence of cytochrome a confirmation in cytochrome c oxidase. J Biol Chem 1991;266:23916–23920.

    Google Scholar 

  60. Poyton RO, Trueblood CE, Wright RM, Farrell LE. Expression and function of cytochrome c oxidase subunit analogues. Ann New York Acad Sci 1988;550:289–307.

    Google Scholar 

  61. Lin J, Pan LP, Chan SI. The subunit location of magnesium in cytochrome c oxidase. J Biol Chem 1993;268(29):22210–22214.

    Google Scholar 

  62. Semenza GL, Roth PH, Fang H-M, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by Hypoxia-inducible factor 1. J Biol Chem 1994;269: 23757–23763.

    Google Scholar 

  63. Wang GL, Jiang B-H, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995;92:5510–5514.

    Google Scholar 

  64. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995;270:1230–1237.

    Google Scholar 

  65. Martin ME, Chinenov Y, Yu M, Schmidt TK, Yang X-Y. Redox regulation of GA-binding protein-a DNA binding activity. J Biol Chem 1996;271:25617–25623.

    Google Scholar 

  66. Kobayashi K, Neely JR. Effects of Ischemia and reperfusion on pyruvate dehydrogenase activity in isolated rat hearts. J Mol Cardiol 1983;15:359–367.

    Google Scholar 

  67. Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Metabolic Causes of Low Output Syndrome 181 Misbin RI. Treatment of lactic acidosis with dichloroacetate. N Engl J Med 1983;309:303–306.

    Google Scholar 

  68. Stacpoole PW. The pharmacology of dichloroacetate. Metabolism 1989;38:1124–1144.

    Google Scholar 

  69. Matsuoka S, Toshima K, Naito E, Nakatsu T, Miyauchi Y, Kuroda Y, Miyao M. Effects of dichloroacetate on the mechanical function of the isolated ischemic heart. Japan Heart J 1987;28:531–537.

    Google Scholar 

  70. McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 1990;259:H1079–H0185.

    Google Scholar 

  71. Lopaschuk GD, Saddik M. The relative contribution of glucose and fatty acids to ATP production in hearts reperfused following ischemia. Mol Cell Biochem 1992;116:111–116.

    Google Scholar 

  72. Lewandowski ED, White LT. Pyruvate dehydrogenase influences postishemic heart function. Circulation 1995;91:2071–2079.

    Google Scholar 

  73. Racey-Burns LA, Burns AH, Summer WR, Sheperd RE. The effect of dichloroacetate on the isolated no flow arrested rat heart. Life Sci 1989;44:2015–2023.

    Google Scholar 

  74. Gamble J, Lopaschuk GD. Glycolysis and glucose oxidation during reperfusion of ischemic hearts from diabetic rats. Biochim Biophys Acta 1994;1225:191–199.

    Google Scholar 

  75. Wahr JA, Childs KF, Bolling SF. Dichloroacetate enhances myocardial functional and metabolic recovery following global ischemia. J Cardiothor Vascul Anest 1994;8:192–197.

    Google Scholar 

  76. Wahr JA, Ullrich K, Bolling SF. The use of dichloroacetate in the treatment of overwhelming hypoxic acidosis. J Cardiothor Vasc Anesth 1994;8:64–69.

    Google Scholar 

  77. Mazer CD, Cason BA, Stanley WC, Shnier CB, Wisneski JA, Hickey RF. Dichloroacetate stimulates carbohydrate metabolism but does not improve systolic function in ischemic pig heart. Am J Physiol 1995;268:H879–H885.

    Google Scholar 

  78. Sakai K, Ichihara K, Nasa Y, Kamigaki M, Abiko Y. Dichloroacetate attenuates myocardial acidosis and metabolic changes induced by partial occlusion of the coronary artery in dogs. Arch Int Pharm Therap 1990;307:92–108.

    Google Scholar 

  79. Bersin RM, Wolfe C, Kwasman M, Lau D, Klinski C, Tanaka K, Khorrami P, Henerson GN, deMarco T, Chatterjee K. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 1995;23:1617–1624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mickle, D.A. Metabolic Causes of Low Output Syndrome in Patients with Cyanotic Heart Disease after Cardiac Surgery. Heart Fail Rev 4, 1–8 (1999). https://doi.org/10.1023/A:1009828609898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009828609898

Navigation