Skip to main content
Log in

A Riemann–Hilbert Problem for Propagation of Electromagnetic Waves in an Inhomogeneous, Dispersive Ω Waveguide

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider the inverse scattering problem for a model of electromagnetic wave propagation in a rectangular waveguide filled with dispersive Ω material. The waveguide is inhomogeneous in the longitudinal direction but homogeneous in the transverse directions. Dispersive properties of the material are described by a single-resonance Lorentz model. By reformulating the scattering problem in the frequency domain as a Riemann–Hilbert problem, we prove that the constitutive parameters of the inhomogeneous waveguide are reconstructed uniquely from the scattering data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R. and Coifman, R. R.: Scattering and inverse scattering for first order systems, Comm. Pure Appl. Math. 37 (1984), 39–90.

    Google Scholar 

  2. Bernekorn, P., Karlsson, A. and Kristensson, G.: Propagation of transient electromagnetic waves in inhomogeneous and dispersive waveguides, J. Electro. Waves Appl. 10 (1996), 1263–1286.

    Google Scholar 

  3. Boutet de Monvel, A. and Shepelsky, D.: Direct and inverse scattering problem for a stratified nonreciprocal medium, Inverse Problems 13 (1997), 239–251.

    Google Scholar 

  4. Boutet de Monvel, A. and Shepelsky, D.: Inverse scattering problem for a stratified bi-isotropic medium at oblique incidence, Inverse Problems 14 (1998), 29–40.

    Google Scholar 

  5. Boutet de Monvel, A. and Shepelsky, D., 1999: A frequency-domain inverse problem for a dispersive stratified chiral medium, Preprint BIBOS 3/6/99.

  6. Dvorak, S. L. and Duldy, D. G.: Propagation of ultra-wide-band electromagnetic pulses through dispersive media, IEEE Trans. Electromagn. Compatibility 37(2) (1995), 192–200.

    Google Scholar 

  7. He, S.: A time-harmonic Green's function technique and wave propagation in a stratified nonreciprocal chiral slab with multiple discontinuities, J. Math. Phys. 33 (1992), 4103–4110.

    Google Scholar 

  8. Jaggard, D. L. and Engheta, N.: Chirality in electrodynamics: Modelling and apllications, in H. L. Bertoni and L. B. Felsen (eds), Directions in Electromagnetic Modelling, Plenum Publishing Co., New York, 1993.

    Google Scholar 

  9. Kharina, T. G., Tretyakov, S. A., Sochava, A. A., Simovski, C. R. and Bolioli, S.: Experimental studies of artificial omega media, Electromagnetics 18 (1998), 423–437.

    Google Scholar 

  10. Kristensson, G.: Transient electromagnetic wave propagation in waveguides, J. Electro. Waves Appl. 9 (1995), 645–671.

    Google Scholar 

  11. Lindell, I. V. and Sihvola, A. H.: Plane-wave reflection from uniaxial chiral interface and its application to polarization transformer, IEEE Trans. Antennas and Propagation 43 (1995), 1397–1404.

    Google Scholar 

  12. Norgen, M.: Optimal design using stratified bianisotropic media: Application to anti-reflection coatings, J. Electro. Waves Appl. 12 (1998), 933–959.

    Google Scholar 

  13. Norgen, M. and He, S.: Reconstruction of the constitutive parameters for an Ω material in a rectangular waveguide, IEEE Trans. Microwave Theory Techniques 43(6) (1995), 1315–1321.

    Google Scholar 

  14. Norgen, M. and He, S.: On the possibility of reflectionless coating of a homogeneous bianisotropic layer on a perfect conductor, Electromagnetics 17 (1997), 295–307.

    Google Scholar 

  15. Rikte, S.: Reconstruction of bi-isotropic material parameters using transient electromagnetic fields, Wave Motion 28 (1998), 41–58.

    Google Scholar 

  16. Saadoun, M. M. I. and Engheta, N.: A reciprocal phase shifter using noval pseudochiral or Ω medium, Microwave Opt. Tech. Lett. 5(4) (1992), 184–187.

    Google Scholar 

  17. Shabat, A. B.: Inverse scattering problem for a system of differential equations, Funktsional Anal. i Prilozhen. 9 (1975), 75–78.

    Google Scholar 

  18. Siushansian, R. and LoVetri, J.: Efficient evaluation of convolution integrals arising in FDTD formulations of electromagnetic dispersive media, J. Electro. Waves Appl. 11 (1997), 101–117.

    Google Scholar 

  19. Stenius, P. and York, B.: On the propagation of transients in waveguides, IEEE Antennas and Propagation Magazine 37 (1995), 39–44.

    Google Scholar 

  20. Tretyakov, S. A.: Uniaxial omega medium as a physically realizable alternative for the perfectly matched layer (PML), J. Electro. Waves Appl. 12 (1998), 821–837.

    Google Scholar 

  21. Tretyakov, S. A., Sihvola, A. H., Sochava, A. A. and Simovski, C. R.: Magnetoelectric interactions in bi-anisotropic media, J. Electro. Waves Appl. 12 (1998), 481–497.

    Google Scholar 

  22. Tretyakov, S. A. and Sochava, A. A.: Proposed composite materials for non-reflecting shields and antenna radomes, Electron. Lett. 29 (1993), 1048–1049.

    Google Scholar 

  23. Viitanen, A. J. and Lindell, I. V.: Plane wave propagation in a uniaxial bianisotropic medium with an application to a polarization transformer, Int. J. Infrared Millimim. Waves 14(10) (1993), 1993–2010.

    Google Scholar 

  24. Zhou, X.: The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal. 20 (1989), 966–986.

    Google Scholar 

  25. Zhou, X.: Inverse scattering transform for systems with rational spectral dependence, J. Differential Equations 115 (1995), 277–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shepelsky, D. A Riemann–Hilbert Problem for Propagation of Electromagnetic Waves in an Inhomogeneous, Dispersive Ω Waveguide. Mathematical Physics, Analysis and Geometry 3, 179–193 (2000). https://doi.org/10.1023/A:1009826621082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009826621082

Navigation