Skip to main content
Log in

Molecular Biology of Human Arrhythmias: Implications for the Clinical Electrophysiologist

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Geisterfer-Lowrance A, et al. A mouse model of familial hypertrophic and cardiomyopathy. Science 1996;272:731-734.

    Google Scholar 

  2. Berul CI, et al. Electrophysiological abnormalities and arrhythmias in aMHC mutant familial hypertrophic cardiomyopathy mice. J Clin Invest 1997;99:274-280.

    Google Scholar 

  3. Berul CI, Aronovitz M, Wang PJ, Mendelsohn ME. In vivo cardiac electrophysiology studies in the mouse. Circulation 1996;2641-2648.

  4. Berul C, Mendelsohn M. Molecular biology and genetics of cardiac disease associated with sudden death: Electrophysiologic studies in mouse models of inherited human diseases. In: Estes NAM, Sales D, Wang P, eds. Sudden Cardiac Death in the Athlete. New York: Futura, 1998:465-482.

    Google Scholar 

  5. Berul C, Christe M, Aronowitz M, Macquire CT, Seidman CE, Seidman CE, Seidman JG, Mendelsohn M. Familial hypertrophic cardiomyopathy: Mice displace gender differences in electrophysiologic abnormalities. J Intervent Card Electrophysiol 1998;2:7-15.

    Google Scholar 

  6. Braunwald E. Shattuck Lecture—Cardiovascular medicine at the turn of the millennium: Triumphs, concerns, and opportunities. N Eng J Med 1997;337:1360-1369.

    Google Scholar 

  7. Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT. Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med 1997;336:1562-1567.

    Google Scholar 

  8. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Van Raay TJ, Shen J, Timothy KW, Vincent GM, De Jager T, Schwartz PH, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. Positional cloning of a novel potassium channel: KvLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996;12:17-23.

    Google Scholar 

  9. Wang Q, Shen J, Splawski I, Atkinson DL, Li ZZ, Robinson JL, Moss AJ, Towbin JA, Keating MT. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995;80:805-811.

    Google Scholar 

  10. Curran ME, Splawski I, Timonthy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995;80: 795-803.

    Google Scholar 

  11. Roden DM, et al. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. Circulation 1996;94:1996-2012.

    Google Scholar 

  12. Shimizu W, Kurita T, Matsuo K, Suyama K, Aihara N, Kamakura S, Towbin JA, Shimomura K. Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation 1998;97:1581-1588.

    Google Scholar 

  13. Compton SJ, Lux RL, Ramsey MR, Strelich KR, Sanguinetti MC, Green LS, Keating MT, Mason JW. Genetically defined therapy of inherited long-QT syndrome: Correction of abnormal repolarization by potassium. Circulation 1996;94:1018-1022.

    Google Scholar 

  14. Grace AA, Chien KR. Congenital long QT syndrome. Toward molecular dissection of arrhythmia substrates. Circulation 1995;92:2786-2789.

    Google Scholar 

  15. Schwartz PH, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, Keathing MT, Hammoude H, Brown AM, Chen LSK, Colatsky TJ. Long QT syndrome with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate: Implications for gene-specific therapy. Circulation 1995;92:3381-3386.

    Google Scholar 

  16. Fontaine G, Fontaliran F, Frank R. Arrhythmogenic right ventricular cardiomyopathies: Clinical forms and main differential diagnoses. Circulation 1998;97:1532-1535.

    Google Scholar 

  17. Burke AP, Farb A, Tashko G, Virman R. Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium. Are they different diseases? Circulation 1998;97:1571-1580.

    Google Scholar 

  18. Coonar AS, Protonotarios N, Tastsopoulou A, Needham EWA, Houlston RS, Cliff S, Otter MI, Murday VA, Mattu RK, McKenna WJ. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and wooley hair (Naxos disease) maps to 17q21. Circulation 1998;97:2049-2058.

    Google Scholar 

  19. Rampazzo A, Nava A, Danieli GA, Buja G, Daliento L, Fasoli G, Scognamiglio R, Corrado D, Thiene G. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24. Hum Mol Genet 1994;3:959-962.

    Google Scholar 

  20. Rampazzo A, Nava A, Erne P, Eberhard M, Vian E, Slomp P, Tiso N, Thiene G, Danieli GA. A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42-q43. Hum Mol Genet 1995;4:2151-2154.

    Google Scholar 

  21. Severini GM, Krajinovic M, Pinamonti B, Sinagra G, Fioretti P, Brunazzi MC, Falaschi A, Camerinie F, Giacca M, Mestronic L. A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14. Genomics 1996; 31:193-200.

    Google Scholar 

  22. Chen Q, Kirsch G, Zhang D, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithhart G, Ortiz-Lopez R, Wang Z, antzelevitch, C, O'Brien, R, Schulze-Bahr E, Keating M, Towbin J, Wang Q. Genetic and molecular mechanism for idiopathic ventricular fibrillation Nature 1998:392V 93-296.

  23. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden death: A distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 1992;20:1391-1396.

    Google Scholar 

  24. Brugada R, Tapscott T, Czernuszewicz GZ, Marian AJ Iglesias A, Mont L, Brugada J, Girona J, Domingo A, Bachiniski LL, Roberts R. Indentification of a genetic locus for familial atrial fibrillation. New Eng J Med 1997; 336(13):905-911.

    Google Scholar 

  25. Watkins H, et al. Mutations in the genes for cardiac troponin T and a-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995;332:1058-1064.

    Google Scholar 

  26. Watkins H, Rosenzweig A, Hwang D-S, et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 1992;326:1108-1114.

    Google Scholar 

  27. Maian AJ, Roberts R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation 1995; 91:1336-1347.

    Google Scholar 

  28. Schwartz K, Carrier L, Guicheney P, Komajda M. Molecular basis of familial cardiomyopathies. Circulation 1995;92: 1336-1347.

    Google Scholar 

  29. Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy.N Engl J Med 1995;332:1058-1064.

    Google Scholar 

  30. Watkins H, et al. A de novo mutation in α-troponmyosin that causes hypertrophic cardiomyopathy. Circulation 1995;91: 2203-2305.

    Google Scholar 

  31. Thierfelder L, et al. Mutations in a-tropomyosin and in cardiac troponin T cause hypertrophic cardiomyopathy: A disease of the sarcomere. Cell 1994;77:701-712.

    Google Scholar 

  32. Nimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman C. Mutations in the gene for cardiac nyosin binding protein C and late-onset familial hypertrophic cardiomyopathy N Engl J Med 1998; 338:1248-1257.

    Google Scholar 

  33. Seidman CE, Seidman JG. Gene mutations that cause familial hypertrophic cardiomyopathy. In: Haber E, ed. Molecular Cardiovascular Medicine. New York: Scientific American Press, 1995;193-210.

    Google Scholar 

  34. Sutton MSJ, Epstein JA. Hypertrophic cardiomyopathy-beyond the sarcomere. Editorial New Engl J Med 1998; 338: 1303-1304.

    Google Scholar 

  35. Durand JB, Abchee AB, Roberts R. Molecular and clinical aspects of inherited cardiomyopathies. Annals of Medicine 1995;27:311-317.

    Google Scholar 

  36. Michael VV, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 1992;326:77-82.

    Google Scholar 

  37. Durand JB, et al. Localization of a gene responsible for familial dilated cardiomyopathy to chromosome 1q32. Circulation 1995;92:2287-3389.

    Google Scholar 

  38. Olson TM, Keating MT. Mapping a cardiomyopathy locus to chromosome 3p22-25. J Clin Invest 1996;97:528-532.

    Google Scholar 

  39. Berul CI, Reddy S, Aronowitz MJ, et al. Atrioventricular conduction abnormalities in a mouse model of myotonic dystrophy. PACE 1997;1101

  40. Reddy S, et al. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet 1996;13:325-335.

    Google Scholar 

  41. Davis LM, Kanter HL, Beyer EC, Saffitz JE. Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties. J Am Coll Cardiol 1994;24:1124-1132.

    Google Scholar 

  42. Reaume AG, et al, Cardiac malformation in neonatal mice lacking connexin43. Science 1995;267:1831-1834.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estes, N.A.M., Mendelsohn, M.E. Molecular Biology of Human Arrhythmias: Implications for the Clinical Electrophysiologist. J Interv Card Electrophysiol 2, 321–324 (1998). https://doi.org/10.1023/A:1009787932350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009787932350

Keywords

Navigation