Skip to main content
Log in

Quantification of N-losses as NH3, NO, and N2O and N2 from fertilized maize fields in southwestern France

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Emissions of nitrogen compounds (NO, NH3, N2O and N2) from heavily fertilized (280 kg(N) ha-1) and irrigated maize fields were studied over an annual cultivation cycle in southwestern France. NO and N2O emissions were measured by chamber techniques throughout the year. During fertilization and maize growth periods, chamber measurements were intensified and complemented by flux-gradient micrometeorological measurements of NOx and NH3. The two methods used, Bowen ratio and a simplified aerodynamical techniques, agree quite well and quantify NOx and NH3 flux variations during the period of intense emission which followed fertilizer application. Over a yearly cycle, nitrogen loss in the form of NH3, NO and N2O were calculated using micrometeorological flux measurements and emission algorithms calibrated with field data (chambers). The soil denitrification potential represented by the ratio N2O/(N2O+N2) was measured in the laboratory to calculate potential total gaseous nitrogen loss. Taking into account all uncertainties, the total N loss into the atmosphere represents 30 to 110 kg(N) ha-1 with about less than 1% as NH3, 40% as NO, 14% as N2O and 46% as N2. This is in agreement with the agronomic nitrogen budget based on the N fertilizer input and soil furniture and, on the N-output by crops and crop residues, which displays a net imbalance of 50 to 100 kg(N) ha-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakwin P. S., S. C. Wofsy, S. M. Fan, M. Keller, S. E. Trumbore, and J. M. Da Costa, Emission of nitric oxide (NO) from tropical forest soils and exchanges of NO between the forest canopy and the atmospheric boundary layers. J. Geophys. Res., 16,755–16,764, 1990.

  • Baldocchi D. D., S. B. Verma, and N. J. Rosenberg, Mass and energy exchanges of a soybean under various environmental regimes. Agron. J., 73: 706–710, 1981.

    Google Scholar 

  • Biscoe P. V., J. A. Clark, K. Gregson, M. McGowan, J. L. Montheith, and R. K. Scott, Barley and its environment. I. Theory and Practice, J. Appl. Ecol., 12: 227–257, 1975.

    Google Scholar 

  • Brown K. W. and N. J. Rosenberg, Energy and CO2 balance of an irrigated sugar beet field in the great Plains. Agron. J., 63: 207–312, 1971.

    Google Scholar 

  • Businger J. A., J. C. Wyngaard, Y. Izumi, E. F. Bradley, Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28: 181–189, 1971.

    Google Scholar 

  • Calvert J. G., and W. R. Stockwell, Acid generation in the troposphere by gas-phase chemistry. Environ. Sci. Technol., 17,9: 428–443, 1983.

    Google Scholar 

  • Conrad R., Flux of NOx between soil and atmosphere: Importance and soil metabolism. In: Denitrification in Soil and Sediment, N. P. Revbech and J. Sorensen eds., Plenum Press, New York, 105–125, 1990.

    Google Scholar 

  • Conrad R., W. Seiler, and G. Bunse, Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O, J. Geophys. Res., 88: 6709–6718, 1983.

    Google Scholar 

  • Crawford T. V., Moisture transfer in free and forced convection. Quat. J. Roy. Meteorol. Soc, 91: 18–27, 1965.

    Google Scholar 

  • Crutzen P. J., and D. H. Ehhalt, Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio, 6: 112–117, 1977.

    Google Scholar 

  • Crutzen P. J., The role of NO and NO2 in the chemistry of the troposphere and the stratosphere. Ann. Rev. Earth Planet Sci., 7: 333–372, 1979.

    Google Scholar 

  • Delmas R., D. Serça, and C. Jambert, Global inventory of NOx sources, Submitted to nutrient cycling in agroecosystems

  • Duyer A. J., B. B. Hicks, Flux-gradient relationship in the constant flux layer. Quat. J. Roy. Metorol. Soc., 96: 715–721, 1970.

    Google Scholar 

  • Duyer A. J., The turbulent transport of heat and water vapour in an unstable atmosphere. Quat. J. Roy. Meteorol. Soc., 93: 501–508, 1967.

    Google Scholar 

  • Fehsenfeld F. C., J. W. Drummond, U. K. Roychowdhury, P. J. Galvin, E. J. Williams, M. P. Buhr, D. D. Parrish, G. Hübler, A. O. Langford, J. G. Calvert, B. A. Ridley, F. Grahek, B. G. Heikes, G. L. Kok, J. D. Shetter, J. G. Walega, C. M. Elsworth, R. B. Norton, D. W. Fahey, P. C. Murphy, C. Hovermale, V. A. Mohnen, K. L. Demerjian, G. I. Mackay, and H. I. Schiff, Intercomparison of NO2 measurement techniques. J. Geophys. Res., 95: 3579–3597, 1990.

    Google Scholar 

  • Fitzjarrald D. R., and D. H. Lenschow, Mean concentrations and flux profile for chemically reactive species in the atmospheric surface layer. Atmos. Environ., 17: 2505–2512, 1983.

    Google Scholar 

  • Fritschen L. J., and J. R. Simpson, Surface energy and radiation balance systems: general description and improvements. J. Appl. Meteorol., 28: 680–689, 1989.

    Google Scholar 

  • Galbally I. E., J. R. Freney, W. A. Muirhead, J. R. Simpson, A. C. Trevitt and P. M. Chalk, Emissions of nitrogen oxides (NOx) from a flooded soil fertilized with urea: Relation to other nitrogen loss processes. J. Atmos. Chem., 5: 343–365, 1987.

    Google Scholar 

  • Germon J. C., Etude quantitative de la dénitrification dans les sols à l'aide de l'acétylène-Application à différents sols. Ann. Microbiol. (Inst. Pasteur), 131 B: 69–80, 1980.

    Google Scholar 

  • Granli T., and C. Bøckman, Nitrous oxide from agriculture. Norwegian Journal of Agriculture Sciences, 1994.

  • Hartman R. K., and L. W. Gay, Improvement in the design and the calibration of temperature measurement systems. Proceedings of the 15th conference of Agricultural and forest Meteorology. 210 pp, 1981.

  • IPCC, Climate Change. J.T. Houghton, B. A. Callander and S. K. Varney eds, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  • Itier B., Cellier P., Riou C., Advances in evapotranspiration. Proceedings of the National Conference on Advances in Evapotranspiration, 1985.

  • Itier B., Révision d'une méthode simplifiée pour la mesure du flux de chaleur sensible. J. Rech. Atmos., 1: 85–90, 1982.

    Google Scholar 

  • Jacobs A. F. G. and J. H. van Boxel, Changes of the displacement height and roughness length of maize during a growing season. Agricultural and Forest Meteorology, 42: 53–62, 1988.

    Google Scholar 

  • Jambert C., R. A. Delmas, L. Labroue, and P. Chassin, Nitrogen compound emissions from fertilized soils in a maize field-pine tree forest system in the Southwest of France, J. Geophys. Res., 99: 16,523–16,530, 1994.

    Google Scholar 

  • Jambert C., R. Delmas, D. Serça, L. Thouron, L. Labroue and L. Delprat, N2O and CH4 emissions from fertilized agricultural soils in southwest France, submitted to Nutrient Cycling in Agroecosystems, 1996, b.

  • Kledmeltsson L., B. M. Svensson and T. Rosswall, A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biol. Fertil. Soils, 6: 112–119, 1990.

    Google Scholar 

  • Knowles R., Acetylene inhibition technique: development, advantages and potential problems. In: Denitrification in Soil and Sediment, N. P. Revsbech and J. Sorensen eds., Plenum Press, New York, 151–166, 1990.

    Google Scholar 

  • Kondo J., Relationnships between the roughness coefficient and other aerodynamic parameters. J. Meteorol. Soc. Japan, 49: 121–124, 1971.

    Google Scholar 

  • Kramm G., A numerical method for determining the dry deposition of atmospheric trace gases. Boundary-layer Meteorol., 48: 157–175, 1989.

    Google Scholar 

  • Kramm G., H. Müller., D. Fowler, K. D. Höfken, F. X. Meixner and E. Schaller, A modified profile method for determining the vertical fluxes of NO,NO2, ozone, and HNO3 in the atmospheric surface layer. Journal Atmos. Chem., 13: 265–288, 1991.

    Google Scholar 

  • Labroue L., R. Delmas, D. Serça and J. Dagnac, Nitrate contamination of ground water as a factor of atmospheric pollution. C. R. Acad. Sci., Paris, 313: 119–124, 1991.

    Google Scholar 

  • Lamaud A., Y. Brunet, A. Labattut, A. Lopez, J. Fontan, and A. Druilhet, The Landes Experiment: Biosphere-atmosphere exchanges of ozone and aerosol particles above a pine forest. J. Geophys. Res., 99: 16,511–16,530, 1994.

    Google Scholar 

  • Lenschow D. H., Reactive trace species in the boundary layer from a micrometeorological perspective. J. Meteorol. Soc. Japan, 60: 472–490, 1982.

    Google Scholar 

  • Logan J. A., Nitrogen oxides in the troposphere, global and regional budgets. J. Geophys. Res., 88: 785–807, 1983.

    Google Scholar 

  • Monin A. S. and A. M. Obukhov, Basic laws of turbulence mixing in the ground layer of the atmosphere. Trudy Geofiz. Inst. Akad. Nauk SSSR, 24: 163–187, 1954.

    Google Scholar 

  • Parrish D. D., E. J. Williams, D. W. Fahey, S. C. Liu, and F. C. Fehsenfeld, Measurement of nitrogen oxide fluxes from soils: Intercomparison of enclosure and gradient measurement techniques. J. Geophys. Res., 92: 2165–2171, 1987.

    Google Scholar 

  • Paulson C. A., The mathematical representation of wind speed and temperature profiles in the unstable atmosphere surface layer. J. Appl. Meteor., 9, 857–861, 1970.

    Google Scholar 

  • Plenet D., Fonctionnement des cultures de maïs sous contrainte azotée. Determination et application d'un indice de nutrition. These de l'INPL, 31 mai 1995.

  • Pruitt W. O., D. L. Morgan, and F. J. Lourence, Momentum and mass transfers in the surface boundary layer. Quat. J. Roy. Meteorol. Soc., 99: 370–386, 1973.

    Google Scholar 

  • Riou C., Une expression analytique du flux de chaleur sensible en conditions suradiabatiques à partir de mesures de vent et de température à deux niveaux. J. Rech. Atmos., 16(1): 15–22, 1982.

    Google Scholar 

  • Ryden J. C., and D. E. Rolston, The measurement of denitrification. In: Gaseous loss of Nitrogen from Plant-Soil Systems, J. R. Freeney and J. R. Simpson eds., 91–132, 1983.

  • Serça D., R. A. Delmas, C. Jambert, and L. Labroue, Emissions of nitrogen oxides from equatorial rain forest in central Africa: Origin and regulation of NO emission from soils. Tellus, 46B: 243–254, 1994.

    Google Scholar 

  • Shepherds M. F., S. Barzetti, and D. R. Hastie, The production of atmospheric NOx and N2O from a fertilized agricultural soil. Atmos. Environ., 25A(9): 1961–1969, 1991.

    Google Scholar 

  • Skiba U., K. J. Hargreaves, D. Fowler, and K. A. Smith, Fluxes of nitric and nitrous oxides from agricultural soil in a cool temperate climate. Atmos. Environ., 26A(14): 2477–2488, 1992.

    Google Scholar 

  • Tiedje J. M., S. Simkins and P. M. Groffman, Perspectives on measurement of denitrification in the field included recommended protocols for acetylene inhibition methods. Plant Soil, 115: 261–284, 1989.

    Google Scholar 

  • Vila-Guerau de Arellano J., P. J. Duynkerke and P. J. H. Builtjes, The divergence of the turbulence diffusion flux in the surface layer due to chemical reactions: NO-O3-NO2 system. Tellus, 45B, 23–33, 1993.

    Google Scholar 

  • Webb E. K., Profile relationships: the log-linear range and extension to strong stability. Q. J. R. Meteorol. Soc, 96: 67–90, 1970.

    Google Scholar 

  • Williams E. J., D. D. Parrish and F. C. Fehsenfeld, Determination of nitrogen oxide emissions from soils: results from a grassland site in Colorado, United States. J. Geophys. Res., 92: 2173–2179, 1987.

    Google Scholar 

  • Williams E. J. and F. C. Fehsenfeld, Measurement of soil nitrogen oxide emissions at three North American ecosystems. J. Geophys. Res., 96: 1033–1042, 1991.

    Google Scholar 

  • Williams E. J., G. L. Hutchinson, and F. C. Fehsenfeld, NOx and N2O emissions from soil, Global Biogeochemical Cycles, 6: 351–388, 1992.

    Google Scholar 

  • Williams E. J., and E. A. Davidson, An intercomparison of two chamber methods for the determination of emission of nitric oxide from soil, Atmos. Environment, 27A,14, 2107–2113, 1993.

    Google Scholar 

  • Yaglom A. M., Comments on wind and temperature flux-profile relationnships, Boundary layer Meteorol., 11: 89–102, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jambert, C., Serça, D. & Delmas, R. Quantification of N-losses as NH3, NO, and N2O and N2 from fertilized maize fields in southwestern France. Nutrient Cycling in Agroecosystems 48, 91–104 (1997). https://doi.org/10.1023/A:1009786531821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009786531821

Navigation