Skip to main content
Log in

Use of proteomics and PCR to elucidate changes in protein expression in oral streptococci

  • Published:
Methods in Cell Science

Abstract

Several techniques are available for the exploration of changes in gene expression and protein repertoire in bacteria due to changes in environment. We have been interested in the changes that S. mutans, a cariogenic oral microorganism, makes in response to growth at low pH values. Two approaches that we have utilized to evaluate alterations in gene expression are the polymerase chain reaction and two-dimensional gel electrophoresis. The use of degenerate primers in PCR amplification of genes by homology-based approaches is included as well as a method for the construction of genetic fusions by splice-overlap extension PCR (SOE-PCR). As genome nucleotide sequences become available for the streptococci, PCR will likely be used more in combination with protein databases, or proteomes, to explore the expression of genes under specific environmental conditions. Therefore, we include a description of two-dimensional gels prepared using protein extracts of cells grown in steady-state under different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel FM, Brent R, Kingston RE, et al. (1987). Current protocols in molecular biology. New York: John Wiley & Sons.

    Google Scholar 

  2. Belli WA, Marquis RE (1991). Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol 57: 1134–1138.

    Google Scholar 

  3. Bender GR, Sutton SVW, Marquis RE (1988). Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53: 331–338.

    Google Scholar 

  4. Burgess-Cassler A, Johanson JJ, Santek DA, Ide JR, Kendrick NC (1989). Computerized quantitative analysis of coomassie-blue-stained serum proteins separated by two-dimensional electrophoresis. Clin Chem 35: 2297–2304.

    Google Scholar 

  5. Burne RA, Chen Y-YM (1998). The use of continuous flow bioreactors to explore gene expression and physiology of suspended and adherent populations of oral streptococci. Methods Cell Sci 20: 181–190 (this issue).

    Google Scholar 

  6. Chassy BM (1976). A gentle method for the lysis of oral streptococci. Biochem Biophys Res Comm 68: 603–608.

    Google Scholar 

  7. Daspher SG, Reynolds EC (1992). pH regulation by Streptococcus mutans. J Dent Res 71: 1159–1165.

    Google Scholar 

  8. Dion AS, Pomenti AA (1983). Ammoniacal silver staining of proteins: mechanism of glutaraldehyde enhancement. Anal Biochem 129: 490–496.

    Google Scholar 

  9. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991). ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucl Acids Res 19: 4008.

    Google Scholar 

  10. Fleischmann RD, Adams MD, White O, et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.

    Google Scholar 

  11. Foster JW, Hall HK (1990). Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 172: 771–778.

    Google Scholar 

  12. Fraser CM, Gocayne JD, White O, et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403.

    Google Scholar 

  13. Hamilton IR, Buckley ND (1991). Adapation by Streptococcus mutans to acid tolerance. Oral Microbiol Immun 6: 65–71.

    Google Scholar 

  14. Hecker KH, Roux KH (1996). High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. BioTechniques 20: 478–485.

    Google Scholar 

  15. Heery DM, Gannon F, Powell R (1990). A simple method for subcloning DNA fragments from gel slices. Trends Genet 6: 173.

    Google Scholar 

  16. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.

    Google Scholar 

  17. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61–68.

    Google Scholar 

  18. Hotchkiss RD (1957). Methods for characterization of nucleic acid. In: Colowick SP, Kaplan NO (eds), Methods Enzymol III: 708–715.

  19. James P (1997). Of genomes and proteomes. Biochem Biophys Res Comm 231: 1–6.

    Google Scholar 

  20. Kobayashi H, Suzuki T, Kinoshita N, Unemoto T (1984). Amplification of the Streptococcus faecalis proton-translocating ATPase by a decrease in cytoplasmic pH. J Bacteriol 158: 1157–1160.

    Google Scholar 

  21. Kramer MF, Coen DM, Dorit RC, et al. (1987). The polymerase chain reaction. In: Ausubel FM, Brent R, Kingston RE (eds), Current protocols in molecular biology, vol 2, pp 15.0.1–15.8.8. New York: John Wiley & Sons.

    Google Scholar 

  22. Matsudaira PT (1990). Limited N-terminal sequence analysis. Methods Enzymol 182: 602–613.

    Google Scholar 

  23. Matsudaira PT (1989). A practical guide to protein 178 and peptide purification for microsequencing. New York: Academic Press.

    Google Scholar 

  24. Miwa T. Esaki H, Umemori J, Hino T (1997). Activity of H+-ATPase in ruminal bacteria with special reference to acid tolerance. J Bacteriol 63: 2155–2158.

    Google Scholar 

  25. Murchison JJ, Barrett JF, Cardineau GA, Curtiss III R (1986). Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun 54: 273–282.

    Google Scholar 

  26. O'Farrell PH (1975). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021.

    Google Scholar 

  27. O'Farrell PZ, Goodman HM, O'Farrell PH (1977). High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12: 1133–1141.

    Google Scholar 

  28. Oakley BR, Kirsch DR, Morris NR (1980). A simplified ultrasensitive silver stain for detecing proteins in polyacrylamide gels. Anal Biochem 105: 361–363.

    Google Scholar 

  29. Payne WE, Garrels JI (1997). Yeast protein database (YPD): a database for the complete proteome of Saccharomyces cerevisiae. Nucl Acids Res 25: 57–62.

    Google Scholar 

  30. Quivey RG, Faustoferri RC (1992). In vivo inactivation of the Streptococcus mutans recA gene mediated by PCR amplification and cloning of a recA fragment. Gene 116: 35–42.

    Google Scholar 

  31. Quivey RG, Faustoferri RC, Belli WA, Flores JS (1991). Polymerase chain reaction amplification, cloning, sequence determination and homologies of streptococcal ATPase-encoding DNAs. Gene 97: 63–68.

    Google Scholar 

  32. Roux KH (1994). Using mismatched primer-template pairs in touchdown PCR. BioTechniques 16: 812–814.

    Google Scholar 

  33. Rychlik W, Rhoads RE (1989). A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucl Acids Res 17: 8543–8551.

    Google Scholar 

  34. Rychlik W, Spencer WJ, Rhoads RE (1990). Optimization of the annealing temperature for DNA amplification in vitro. Nucl Acids Res 18: 6409–6412.

    Google Scholar 

  35. Saiki RK, Scharf S, Faloona F, et al. (1985) Enzymatic amplification of β-globin genomic sequence and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354.

    Google Scholar 

  36. Sambrook J, Fritsch EF, Maniatis T, eds (1989). Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Press.

    Google Scholar 

  37. Sansone C, Van Houte J, Joshipura K, Kent R, Margolis HC (1993). The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J Dent Res 72: 508–516.

    Google Scholar 

  38. Shevchenko A, Jensen ON, Podtelejnikov AV, et al. (1996). Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 93: 14440–14445.

    Google Scholar 

  39. Shevchenko A, Wilm M, Vorm O, Mann M (1996). Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68: 850–858.

    Google Scholar 

  40. Smith AJ, Quivey Jr. RG, Faustoferri RC (1996). Cloning and nucleotide sequence analysis of the Streptococcus mutans membrane-bound, protontranslocating ATPase operon. Gene 183: 87–96.

    Google Scholar 

  41. Spatafora GA, Moore MW (1998). Growth of Streptococcus mutans in an iron-limiting medium. Methods Cell Sci 20: 217–221 (this issue).

    Google Scholar 

  42. VanBogelen RA, Kelley PM, Neidhardt FC (1987). Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169: 26–32.

    Google Scholar 

  43. VanBogelen RA, Neidhardt FC (1991). The geneprotein database of Escherichia coli, 4th ed. Electrophoresis 12: 955–994.

    Google Scholar 

  44. VanBogelen RA, Sankar P, Clark RL, Bogan JA, Neidhardt FC (1992). The gene-protein database of Escherichia coli, 5th ed. Electrophoresis 13: 1014–1054.

    Google Scholar 

  45. Walpole RE, Myers RH (1972). Probability and statistics for engineers and scientists. New York: Macmillan.

    Google Scholar 

  46. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. (1995). Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16: 1090–1094.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Quivey Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quivey, R.G., Kuhnert, W.L. & Faustoferri, R.C. Use of proteomics and PCR to elucidate changes in protein expression in oral streptococci. Methods Cell Sci 20, 165–179 (1998). https://doi.org/10.1023/A:1009782723759

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009782723759

Navigation