Skip to main content
Log in

Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

This study used germination methods to examine the density, species composition and functional composition of propagule banks in a series of riverine wetland aquatic habitats subject to varying degrees of hydrological and management-related disturbance. Under permanent inundation (the conditions prevailing at most sites during the growing season) propagule germination and species richness was low, with floodplain perennials and helophytes particularly affected. Densities of floodplain annuals were largely maintained through continued germination of a few flooding tolerant species. On damp mud (conditions associated with hydrological instability) total seedling number and species richness increased significantly, but species richness of germinating hydrophytes declined. Mean seedling density at 0–0.1m depth was 15450 ± 4400 m−2, reaching a maximum (162 050 m−2) in temporary backwaters. Annual (e.g., Lindernia dubia, Cyperus fuscus) and facultative ruderal species (e.g., Lythrum salicaria and Alisma plantago-aquatica) predominated. Vertical zonation of the propagule bank was weakly developed. The numbers of individuals and species germinating varied significantly between sites. The seasonal, most intensely disturbed sites (temporary backwaters) supported a numerically large, species-rich propagule bank based on floodplain annuals, while the permanent, less disturbed sites (ditches and an oxbow pond) had a small, species-poor propagule bank composed of hydrophytes and helophytes supplemented by allochthonous seed inputs. Sites intermediate on the gradient had a propagule bank dominated by facultative amphibious, ruderal hydrophytes. The composition of the seed bank and the established vegetation was most similar at the heavily disturbed sites where the seed bank was maintained by vigorously fruiting annuals and supplemented by inputs from temporary habitats upstream. At permanent sites much of the propagule bank composition could be accounted for by inputs of floodborne seed from the immediately adjacent floodplain. The established vegetation at such sites appeared to be maintained mainly by vegetative propagation with recruitment from the propagule bank likely only after severe disturbance. The potential contribution of functionally diverse propagule banks to sucessional processes within fluvially dynamic floodplain aquatic habitats is emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernethy, V. J. 1994. Functional ecology of euhydrophyte communities of European riverine wetland ecosystems, PhD, University of Glasgow.

  • Banasova, V., Otahelova, H., Jarolimek, I., Zaliberova, M. & Husak, S. 1994. Morava river floodplain vegetation in relation to limiting ecological factors. Ekologia (Bratislava) 13: 247-262.

    Google Scholar 

  • Barrat-Segretain, M. H. 1996. Germination and colonisation dynamics of Nuphar lutea (L.)Sm in a former river channel. Aquatic Bot. 55: 31-38.

    Google Scholar 

  • Barrat-Segretain, M. H. & Amoros, C. 1995. Influence of flood timing on the recovery of macrophytes in a former river channel. Hydrobiologia 316: 91-101.

    Google Scholar 

  • Barrat-Segretain, M. H. & Amoros, C. 1996. Recolonization of cleared riverine macrophyte patches: importance of the border effect. J. Veg. Sci. 7: 769-776.

    Google Scholar 

  • Bartley, M. R. & Spence, D. H. N. 1987. Dormancy and propagation in helophytes and hydrophytes. Archiv Hydrobiolog. Beihefte 27: 139-155.

    Google Scholar 

  • Bonis, A. & Lepart, J. 1994. Vertical structure of seed banks and the impact of depth of burial on recruitment in two temporary marshes. Vegetatio 112: 127-139.

    Google Scholar 

  • Bonis, A., Lepart, J. & Grillas, P. 1995. Seed bank dynamics and coexistence of annual macrophytes in a temporary and variable habitat. Oikos 74: 81-92.

    Google Scholar 

  • Bornette, G. & Heiler, G. 1994. Environmental and biological responses of former channels to river incision: a dichronic study on the Upper Rhone River. Regulated Rivers: Research and Management 9: 79-92.

    Google Scholar 

  • Bornette, G., Henry, C., Barrat, M. & Amoros, C. 1994. Theoretical habitat templets, species traits and species richness: aquatic macrophytes in the Upper Rhone River and its floodplain. Freshw. Biol. 31: 487-505.

    Google Scholar 

  • Brock, T. C. M., van der Velde, G. & van de Steeg, H. M. 1987. The effects of extreme water level fluctuations on the wetland vegetation of a nymphaeid-dominated oxbow lake in the Netherlands. Archiv Hydrobiol Beihefte 27: 57-73.

    Google Scholar 

  • Brux, H., Todeskino, D. & Wiegleb, G. 1987. Growth and reproduction of Potamogeton alpinus Balbis growing in disturbed habitats. Archiv Hydrobiol. Beihefte 27: 115-127.

    Google Scholar 

  • Casanova, M. T. & Brock, M. A. 1990. Charophyte germination and establishment from the seed bank of an Australian temporary lake. Aquatic Bot. 36: 247-254.

    Google Scholar 

  • Collins, B. & Wein, G. 1995. Seed bank and vegetation of a constructed reservoir. Wetlands 15: 374-385.

    Google Scholar 

  • Coops, H. & Van der Velde, G. 1995.Seed dispersal, germination and seedling growth of 6 helophyte species in relation to waterlevel zonation. Freshw. Biol. 34: 13-20.

    Google Scholar 

  • Death, R. G. & Winterbourn, M. J. 1994. Environmental stability and community persistence-a multivariate perspective. J. N. Am. Benthol. Soc. 13: 125-139.

    Google Scholar 

  • Devillier, P., Devillers-Terschuren, J. & Ledant, J. P. 1991. Habitats of the European Community (CORINE biotopes manual. Data specifications part 2). Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Frankland, B., Bartley, M. R.&Spence, D. H. N. 1987. Germination under water. In: Crawford, R. M. M. (ed.), Plant Life in Aquatic and Amphibious Habitats. Blackwell, Oxford.

    Google Scholar 

  • Franz, E. H. & Bazzaz, F. A. 1977. Simulating vegetation response to modified hydrological regimes: a probablistic model based on niche differentiation in a floodplain forest. Ecology 58: 176-183.

    Google Scholar 

  • Galinato, M. I. & van der Valk, A. G. 1986. Seed germination traits of annuals and emergents recruited during drawdowns in the Delta Marsh, Manitoba, Canada. Aquatic Bot. 26: 89-102.

    Google Scholar 

  • Grillas, P. 1990. Distribution of submerged macrophytes in the Camargue in relation to environmental factors. J. Veg. Sci. 1: 393-402.

    Google Scholar 

  • Grillas, P., Garcia-Murillo, P., Geertz-Hansen, O., Marba, N., Montes, C., Duarte, C. M., Tanham, L. & Grossmann, A. 1993. Submerged macrophyte seed bank in a Mediterranean temporary marsh: abundance and relationship with established vegetation. Oecologia 94: 1-6.

    Google Scholar 

  • Grime, J. P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester.

    Google Scholar 

  • Grime, J. P., Hodgson, J. G. & Hunt, R. 1988. Comparative Plant Ecology. Unwin Hyman, London.

    Google Scholar 

  • Grime, J. P., Mason, G., Curtis, A. V., Neal, A. M., Rodman, J. & Shaw, S. 1981. A comparative study of germination characteristics in a local flora. J. Ecol. 69: 1017-1059.

    Google Scholar 

  • Gross, K. L. 1990. A comparison of methods for estimating seed numbers in the soil. J. Ecol. 78: 1079-1093.

    Google Scholar 

  • Guppy, H. B. 1897. On the postponement of germination of seeds of aquatic plants. Proc. Roy. Philos. Soc. Edinburgh 13: 344-360.

    Google Scholar 

  • Harper, J. L. 1977. Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • Hartleb, C. F., Madsen, J. D. & Boylen, C. W. 1993. Environmental factors affecting seed germination in Myriophyllum spicatum L. Aquatic Bot. 45: 15-25.

    Google Scholar 

  • Henry, C. P., Amoros, C. & Bornette, G. 1996. Species traits and recolonisation processes after flood disturbances in riverine macrophytes. Vegetatio 122: 13-27.

    Google Scholar 

  • Hollingsworth, P. M., Preston, C. D. & Gornall, R. J. 1996. Genetic variability in two hydrophilous species of Potamogeton, P.pectinatus and P. filiformis (Potamogetonaceae). Plant Syst. Evol. 202: 233-254.

    Google Scholar 

  • Hook, D. 1984. Adaptations to flooding with freshwater. Pp. 265-294. In: Kozlavsla, T. T. (ed.), Flooding and Plant Growth. Academic Press, New York.

    Google Scholar 

  • Hunyadi, K. & Pathy, Z. 1976. Keszthely komyeki retlap talajoj gyommagfertozottsege [original not consulted]. Novenyvedelem 12: 391-396.

    Google Scholar 

  • Janauer, G. A. & Kum, G. 1996. Macrophytes and flood plain water dynamics in the River Danube ecotone research region (Austria). Hydrobiologia 340: 137-140.

    Google Scholar 

  • Kautsky, L. 1990. Seed and tuber banks of aquatic macrophytes in the Asko area, northern Baltic proper. Holarctic Ecol. 13: 143-148.

    Google Scholar 

  • Keddy, P. A. & Reznicek, A. A. 1982. The role of seedbanks in the persistence of Ontario's coastal plain flora. Am. J. Bot. 69: 13-22.

    Google Scholar 

  • Keddy, P. A. & Reznicek, A. A. 1986. Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. J. Great Lakes Res. 12: 25-36.

    Google Scholar 

  • Kimber, A., Korschgen, C. E. & van der Valk, A. G. 1995. The distribution of Vallisneria americana seeds and seedling light requirments in the Upper Mississippi River. Can. J. Bot. 73: 1966-1973.

    Google Scholar 

  • Ladle, M. & Bass, J. A. B. 1981. The ecology of a small chalk stream and its response to drying drought conditions. Archive Hydrobiol. 90: 448-466.

    Google Scholar 

  • Leck, M. A. 1989. Wetland Seed Banks. Pp. 283-305. In: Leck, M. A., Parker, V. T. & Simpson, R. L. (eds), Ecology of Soil Seed Banks. Academic Press, London.

    Google Scholar 

  • Leck, M. A. & Graveline, K. J. 1979. The seedbank of a freshwater tidal marsh. Am. J. Bot. 66: 1006-1015.

    Google Scholar 

  • Leck, M. A. & Simpson, R. L. 1994. Tidal freshwater wetland zonation: seed and seedling dynamics. Aquatic Bot. 47: 61-75.

    Google Scholar 

  • McCarthy, K. A. 1987. Spatial and temporal distribution of species in two intermittent ponds in Atlantic County, New Jersey. [original not consulted]., MSc, Rutgers University, Piscataway, New Jersey.

    Google Scholar 

  • Merendino, M. T. & Smith, L.M. 1991. Influence of drawdown date and reflood depth on wetland vegetation establishment. Wildlife Soc. Bull. 19: 143-150.

    Google Scholar 

  • Moore, J. A. 1986. Charophytes of Great Britain and Ireland. B.S.B.I. Handbook no. 5. Botanical Society of the British Isles, London.

    Google Scholar 

  • Nicholson, A. & Keddy, P. A. 1983. The depth profile of a shoreline seed bank in Matchedash Lake, Ontario. Can. J. Bot. 61: 3293-3296.

    Google Scholar 

  • Nilsson, C., Ekblad, A., Gardfjell, M. & Carlberg, B. 1991a. Longterm effects of river regulation on river margin vegetation. J. Appl. Ecol. 28: 963-987.

    Google Scholar 

  • Nilsson, C., Gardfjell, M. & Grelsson, G. 1991b. Importance of hydrochory in structuring plant communities along rivers. Can. J. Bot. 69: 2631-2633.

    Google Scholar 

  • Noble, I. R. & Slatyer, R. O. 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5-21.

    Google Scholar 

  • Numata, M., Aoki, K. & Hayashi, I. 1964. Ecological studies on the buried seed population as related to plant succession II: particularly in the pioneer stage dominated byAmbrosia elatior. Jap. J. Ecol. 14: 224-227.

    Google Scholar 

  • Peck, J. H. & Smart, M. M. 1986. An assessment of the aquatic and wetland vegetation of the Upper Mississippi River. Hydrobiologia 136: 57-76.

    Google Scholar 

  • Petts, G. 1984. Impounded Rivers. Perspectives for Ecological Management. Wiley, Chichester.

    Google Scholar 

  • Poiani, K. A. & Dixon, P. M. 1995. Seed banks of Carolina bays-Potential contributions from surrounding landscape vegetation. Am. Midland Nat. 134: 140-154.

    Google Scholar 

  • Rorslett, B. 1989. An integrated approach to hydropower assessment. II: Submerged macrophytes in some Norwegian hydroelectric lakes. Hydrobiologia 175: 65-82.

    Google Scholar 

  • Salisbury, E. 1970. The pioneer vegetation of exposed muds and its biological features. Phil. Trans. Roy. Soc. London. Series B. 259: 207-255.

    Google Scholar 

  • Sastroutomo, S. S. 1981. Turion formation, dormancy and germination of curly pondweed, Potamogeton crispus L. Aquatic Bot. 10: 161-173.

    Google Scholar 

  • Schneider, R. L. & Sharitz, R. R. 1986. Seed bank dynamics in a southeastern riverine swamp. Am. J. Bot. 73: 1022-1030.

    Google Scholar 

  • Sculthorpe, C. P. 1967. The Biology of Aquatic Vascular Plants. Arnold, London.

    Google Scholar 

  • Shipley, B., Keddy, P. A., Gaudet, C. & Moore, D. R. 1991. A model of species density in shoreline vegetation. Ecology 72: 1658-1667.

    Google Scholar 

  • Smith, L.M. & Kadlec, J. A. 1983. Seed banks and their role during drawdown of a North American marsh. J. Applied Ecol. 20: 673-684.

    Google Scholar 

  • Smith, L. M. & Kadlec, J. A. 1985. The effects of disturbance on marsh seed banks. Can. J. Bot. 63: 2133-2137.

    Google Scholar 

  • Stace, C. 1991. New flora of the British Isles. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stockey, A. & Hunt, R. 1992. Fluctuating water conditions identify niches for germination in Alisma plantago-aquatica. Acta Oecol. 13: 227-229.

    Google Scholar 

  • ter Heerdt, G. N. J. & Drost, H. J. 1994. Potential for the developement of marsh vegetation from the seedbank after a drawdown. Biol. Cons. 67: 1-11.

    Google Scholar 

  • Thompson, K. 1978. The occurrence of buried viable seeds in relation to environmental gradients. J. Biog. 5: 425-430.

    Google Scholar 

  • Thompson, K. 1992. The Functional Ecology of Seed Banks. In: Fenner, M. (ed),Seeds: The Ecology of Regeneration in Plant Communities.

  • Thompson, K. & Grime, J. P. 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67: 893-922.

    Google Scholar 

  • Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S.M. & Webb, D. A. (eds) 1964-1980. Flora Europeaea. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ungar, I. A. & Woodell, S. R. J. 1993. The relationship between the seedbank and species composition of plant communities in 2 British salt marshes. J. Veg. Sci. 4: 531-536.

    Google Scholar 

  • van der Valk, A. G. & Davis, C. B. 1976. The seed banks of prairie glacial marshes. Can. J. Bot. 54: 1832-1838.

    Google Scholar 

  • van der Valk, A. G. & Davis, C. B. 1978. The role of the seed bank in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322-335.

    Google Scholar 

  • van der Valk, A. G. & Davis, C. B. 1979. A reconstruction of the recent vegetational history of a prairie marsh, Eagle Lake, Iowa, from its seed bank. Aquatic Bot. 6: 29-51.

    Google Scholar 

  • van Wijk, R. J. 1989. Ecological studies on Potamogeton pectinatus III: Reproductive strategies and germination ecology. Aquatic Bot. 33: 271-299.

    Google Scholar 

  • Wade, P. M. 1990. The colonization of disurbed freshwater habitats by Characeae. Folia. Geobot. Phytotax. Praha 25: 275-278.

    Google Scholar 

  • Wade, P. M. 1993. The influence of vegetation pre-dredging on the post-dredging community. J. Aquatic Plant Manag. 31: 141-144.

    Google Scholar 

  • Wade, P. M. 1995. The Management of Riverine Vegetation. Pp. 307-314. In: Harper, D. M. & Ferguson, A. J. D. (eds), The Ecological Basis of River Management. John Wiley, Chichester.

    Google Scholar 

  • Wilson, S. D. & Keddy, P. A. 1986. Species competitive ability and position along a natural stress disturbance gradient. Ecology 67: 1236-1242.

    Google Scholar 

  • Wilson, S. D., Moore, D. R. J. & Keddy, P. A. 1993. Relationships of marsh seed banks to vegetation patterns along environmental gradients. Freshw. Biol. 29: 361-370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abernethy, V., Willby, N. Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats. Plant Ecology 140, 177–190 (1999). https://doi.org/10.1023/A:1009779411686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009779411686

Navigation