Nutrient Cycling in Agroecosystems

, Volume 50, Issue 1–3, pp 127–142 | Cite as

Hydromorphic soils, hydrology and water quality: spatial distribution and functional modelling at different scales

  • P. Curmi
  • P. Durand
  • C. Gascuel-Odoux
  • P. Mérot
  • C. Walter
  • A. Taha


The hydrology and water quality in landscapes with hydromorphic soils depends on the space and time extension of wetland areas and on water pathways within the landscape at different scales. To study the control of nitrate fluxes by these areas, investigations were carried out on a detailed study site - the Coët Dan catchment (1200 ha) in Brittany, France - involving various disciplines: pedology, soil physics, hydrology, geochemistry and agronomy.

An attempt of functional modelling at different hierarchical levels from the horizon level (i - 1) to the region level (i + 3) of soil distribution, extension of saturated areas, horizons physical characteristics, water transfer in a multilayer soil profile and nitrate fluxes was carried out. The soil system, which can be described as a spatial arrangement of a limited number of horizon types with genetic relationships, is tightly controlled by topography. Predictive models of hydromorphic soil distribution using different topographic indexes and DEM were established. Regarding to their hydrodynamic properties, horizons of the soil system have been classified into “building blocks”, which allows to define physically based parameters for a two-dimensional multilayer water transfer model. A four compartment model of flood genesis based on chemical data obtained from different parts of the catena and from the river was coherent with the multilayer hydrodynamic model. The mean nitrate concentrations in several subcatchments were negatively correlated with the percentage of hydromorphic soils. These studies reveal that the hydromorphic zones had an effect on the nitrogen transfer in the catchment, but this effect is limited by the importance of water pathways by-passing the buffer zones. The conclusions of this programme have direct outcomes for designing new landscape management options.

soil system soil horizon building block mixing model digital elevation model TOPMODEL hillslope mechanistic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antoni V (1995) Organisation spatiale des sols hydromorphes de fonds de vallée et modélisation prédictive de leur distribution. DEA Géosciences, filière Pédologie, Univ. Nancy I, 77 p.Google Scholar
  2. 2.
    Aurousseau P, Curmi P, Bouille S and Charpentier S (1983) Les vermiculites hydroxy–alumineuses du Massif Armoricain (France). Approches minéralogique, microanalytique et thermodynamique. Geoderma, 31, 17–40.Google Scholar
  3. 3.
    Aurousseau P, Curmi P and Bresson LM (1985) Microscopy of the cambic horizon. In: L. A. Douglas & M. L. Thompson (Eds), Soil Micromorphology and Soil Classification. Etats Unis. SSSA Spec. Pub. n 15, 49–61.Google Scholar
  4. 4.
    Baize D and Girard MC (1995) Référentiel Pédologique 1995, Institut National de la Recherche Agronomique, Paris, France.Google Scholar
  5. 5.
    Beven KJ (1986) Hillslope runoff processes and flood frequency characteristics. In: Hillslope processes, Abrahams (Ed), Allen and Unwin, Boston, 187–202.Google Scholar
  6. 6.
    Beven JK and Kirkby MJ (1979) A physically based, variable contributing area model of catchment hydrology. Hydrol. Sci., 24, 43–69.Google Scholar
  7. 7.
    Bouma J (1989) Using soil survey data for quantitative land evaluation. Advances in Soil Science, Vol. 9, 177–213.Google Scholar
  8. 8.
    Bouma J and Dekker LW (1981) A method for measuring the vertical and horizontal Ksat of clay soils with macropores. Soil Sci. Soc. Am. J. 45: 662–663.Google Scholar
  9. 9.
    Bruand A (1990) Improved prediction of water–retention properties of clayey soils by pedological stratification. J. of Soil Science, 41, 491–497.Google Scholar
  10. 10.
    Brun C, Bernard D, Vidal–Madjar D, Gascuel–Odoux C, Mérot P, Duchesne J and Nicolas H (1990) Mapping saturated areas with an helicopter borne C band scatterometer. Water Resour. Res., 26, 945–955.Google Scholar
  11. 11.
    Bruneau P, Gascuel–odoux C, Robin P, Mérot P and Beven KJ (1995) Sensitivity analysis to time and space resolution on an hydrological modelling based on Digital Elevation Model. Hydrol. processes, 69–81.Google Scholar
  12. 12.
    Cann C (1990) Transfer of nutrients in a region of intensive farming. in Hydrological Research Basins and the Environment, Proceedings and Information / TNO committee on Hydrological Research No 44, The Hague, NL: 311–318.Google Scholar
  13. 13.
    Cros–Cayot S (1996) Distribution spatiales des transferts de surface à l échelle du versant. Contexte armoricain. Thèse ENSA–INRA Rennes. 223p.Google Scholar
  14. 14.
    Clothier BE, Kirkham MB and McClean JE (1992) In situmeasurements of the effective transport volume for solute moving through soil. Soil Sci. Soc. Am. J., 56, 733–736.Google Scholar
  15. 15.
    Crave A and Gascuel–Odoux C (1996) The influence of topography on space and time distribution of soil water content. Hydrol. processes, 11, 203–210.Google Scholar
  16. 16.
    Curmi P (1993) Analyse structurale et dynamique actuelle des systèmes pédologiques. Mém. Habilitation à Diriger des Recherches, Univ. Rennes I, 83 p. + annexes.Google Scholar
  17. 17.
    Curmi P, Widiatmaka, Pellerin J and Ruellan A (1994) Saprolite influence on formation of well–drained and hydromorphic horizons in an acid soil system as determined by structural analysis. In: A. J. Ringrose–Voase and G. S. Humphreys (Editors), Soil Micromorphology: Studies in Management and Genesis, Developments in Soil Science 22, Elsevier, Amsterdam, 133– 140.Google Scholar
  18. 18.
    Curmi P, Durand P, Gascuel–Odoux C, Hallaire V, Mérot P, Robin P, Trolard F, Walter C and Bourrié G (1995) Le programme CORMORAN–INRA: de l'importance du milieu physique dans la régulation biogéochimique de la teneur ennitrate des eaux superficielles. Journal Européen d'Hydrologie, 26, 37–56.Google Scholar
  19. 19.
    Diab M, Mérot P, and Curmi P (1988) Water Movement in a Glossaqualf as Measured by two Tracers. Geoderma, 43, 143–161.Google Scholar
  20. 20.
    Durand P and Juan Torres JL (1996) Solute transfer in agricultural catchments: the interest and limits of mixing models. J. Hydrol, 181, 1–22.Google Scholar
  21. 21.
    Gresillon JM (1994) Contribution à l'étude de la formation des écoulements de crue sur les petits bassins versants. Approches numériques et expérimentales à différentes échelles. Diplome d'habilitation à Diriger des Recherches.Google Scholar
  22. 22.
    Haycock NE, Pinay G and Walker C (1993) Nitrogen retention in river corridors: a european perpspective. Ambio, XXII (6), 340–346Google Scholar
  23. 23.
    Hoosbeek MR and Bryant R (1992) Towards the quantitative modelling of pedogenesis–A review. Geoderma, 55: 183–210.Google Scholar
  24. 24.
    Mérot P (1988) Les zones de sources surface variable et la question de leur localisation. Hydrol. continent., 3, 105–115Google Scholar
  25. 25.
    Mérot P, Crave A, Gascuel–Odoux C and Louhala S (1994) Effect of saturated areas on backscaterring coefficient of the ERS1 SAR: first results. Water Res. Res., 30,, 175–179.Google Scholar
  26. 26.
    Mérot P and Durand P (1995) Assessing the representativity of catchments according to their size from hydrochemical observations. IAHS Publication, 226, 105–112.Google Scholar
  27. 27.
    Mérot P, Durand P and Morisson C (1995) Four–component hydrograph separation using isotopic and chemical determinations in an agricultural catchment in Western France. Phys. Chem. Earth, vol. 20, n 3–4: 415–425.Google Scholar
  28. 28.
    Nash JE and Sutcliffe JV (1979) River flow forcasting through conceptual models, 1. A discussion of principles. J. Hydrol, 10, 282–290.Google Scholar
  29. 29.
    Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1, 318–333.Google Scholar
  30. 30.
    Roussel F (1982) Horizons and microscopic organisations characteristic of degraded soils on cambrian schists in central Brittany. In: Soil micromorphology, Volume 2: Soil Genesis P. Bullock & C. P. Murphy (Editors), AB Academic Publishers, 559–565.Google Scholar
  31. 31.
    Soil Survey Staff (1975) Soil Taxonomy: a Basic System of Soil Classification for Making and Interpreting Soil Survey. U. S. Dept. Agric. Handbook 436, 754 p.Google Scholar
  32. 32.
    Stackman WP, Valk GA and Van der Harst CG (1969) Apparature for determination of pF–curves (range pF0–2.7)Wageningen, Doc. interne, 19 p.Google Scholar
  33. 33.
    Taha A and Gresillon JM (1994) Modeling the link between hillslope water movement and river flow: application to a small Mediterranean catchment. In: Oceans, Atmosphere, Hydrosphere & Non–Linear Geophysics (Proc. XIX EGS General Assembly, Annales Geophysicae, Grenoble), part II, suppl. II to vol. 12.Google Scholar
  34. 34.
    Thiersault N and Rodriguez Lado L (1994) Un modèle de prédiction de la distribution spatiale des sols hydromorphes à partir des critères topographiques. Mémoire DAA Génie de l'Environnement, Option Sol et Aménagement. ENSA–INRA Rennes & Facultade de Bioloxia, Univ. Santiago de Compostela, 64 p.Google Scholar
  35. 35.
    Walter C, Gourru M and Nicolas JM (1993) Carte des sols du bassin versant de Naizin à l'échelle du 1/10000. Document ENSA–INRA.Google Scholar
  36. 36.
    Walter C, Curmi P and Gascuel–Odoux C (1996) Pertinence du découpage pédologique pour l'estimation spatiale des propriétés physiques du sol. Validation à l'échelle d'un bassin versant. In: C. Christophe, S. Lardon & P. Monestiez (Editeurs) Etudes des Phénomènes Spatiaux en Agriculture, La Rochelle, 6–8 Déc. 1995, Les Colloques, n 78, Inra, Paris, 97–110.Google Scholar
  37. 37.
    Widiatmaka (1994) Analyse structurale et fonctionnement hydrique d'un système pédologique limoneux acide sur granite et sur schiste du Massif Armoricain, France. Thèse ENSA, Rennes, Sciences de l'Environnement, 260 p. + AnnexesGoogle Scholar
  38. 38.
    Widiatmaka and Curmi P (1994) Soil horizons hydrodynamic characteristics of an acid soil system. Interest of their grouping according to functional properties for spatial transposition. 15th World Congress of Soil Science, Acapulco, Mexico, July 10–16, 1994. Transactions, vol 2b, 151–152.Google Scholar
  39. 39.
    Zida M, Curmi P, Hallaire V and Grimaldi M(1996) Fonctionnement d'un système pédologique armoricain (bassin versant du Coët Dan): II Variations saisonnières et au cours des averses de l état hydrique du sol. In: C Walter & Cheverry C (Eds), 5ièmes Journées Nationales de l'Etude des Sols, Sols et transferts des polluants dans les paysages. AFES, ENSA–INRA Rennes, 22–25 Avril 1996, 263–264Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • P. Curmi
    • 1
  • P. Durand
    • 1
  • C. Gascuel-Odoux
    • 1
  • P. Mérot
    • 1
  • C. Walter
    • 1
  • A. Taha
    • 2
  1. 1.Unité de Science du Sol et de BioclimatologieINRARennes CedexFrance
  2. 2.Univ. Bordeaux 1Talence CedexFrance

Personalised recommendations