Skip to main content
Log in

Angiotensin II Receptors and Angiotensin II-Stimulated Signal Transduction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Originally known to be a vasoconstrictor and thought to play a critical role in hypertension, angiotensin II has recently emerged to be important in inflammation, atherosclerosis, and congestive heart failure. The discovery of selective angiotensin II receptor antagonists has enabled specific functions to be assigned to at least three angiotensin receptor subtypes (AT1, AT2, and AT4 receptors), which are expressed in a tissue-specific manner. Use of these antagonists resulted in the cloning and sequencing of two angiotensin II receptors (AT1 and AT2), which enabled a molecular analysis of angiotensin II binding sites to be performed. With these tools it has become possible to characterize the multiple signal transduction pathways activated by angiotensin II in a receptor- and tissue-specific manner. Initial studies have focused on the AT1 receptor inhibited by losartan and have defined structural domains responsible for G-protein coupling, activation of phospholipase C, and interactions with tyrosine kinases. Three major intracellular signal pathways associated with the AT1 receptor are activation of tyrosine kinases and downstream kinase cascades, stimulation of phospholipase C and increases in intracellular calcium, and inhibition of adenyl cyclase. Recent data show that angiotensin II not only stimulates cytoplasmic tyrosine kinases, including c-Src, focal adhesion kinase (FAK), and Janus kinases (JAK2 and TYK2), but also may transactivate receptor tyrosine kinases such as EGF Axl and PDGF by as yet undefined autocrine mechanisms. These angiotensin II-stimulated signal cascades appear to be required for angiotensin II effects such as vasoconstriction, proto-oncogene expression, protein synthesis, and cell proliferation. Advances in our knowledge of angiotensin II-mediated signaling events, especially those related to stimulation of kinase activity, may aid in development of new therapies for cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braun-Menendez E, Fasciolo JC, Leloir LF, Munoz JM. The substance causing renal hypertension. J Physiol (Lond) 1940;98:283-298.

    Google Scholar 

  2. Page IH, Helmer OM. A crystalline pressor substance (angiotensin) resulting from the reaction between renin and renin activator. J Exp Med 1940;71:29-42.

    Google Scholar 

  3. Wright JW, Harding JW. Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 1995;59:269-295.

    Google Scholar 

  4. Campbell DJ, Kladis A. Simultaneous radioimmunoassay of six angiotensin peptides in arterial and venous plasma of man. J Hypertens 1990;8:165-172.

    Google Scholar 

  5. Lawrence AC, Evin G, Kladis A, Campbell DJ. An alternative strategy for the radioimmunoassay of angiotensin peptides using amino-terminal-directed antisera: measurement of eight angiotensin peptides in human plasma. J Hypertens 1990;8:715-724.

    Google Scholar 

  6. Wright JW, Harding JW. Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci Biobehav Rev 1994;18:21–53.

    Google Scholar 

  7. Wright JW, Krebs LT, Stobb JW, Harding JW. The angiotensin IV system: functional implications. Front Neuroendocrinol 1995;16:23-52.

    Google Scholar 

  8. Benter IF, Diz DI, Ferrario CM. Cardiovascular actions of angiotensin(1-7). Peptides 1993;14:679-684.

    Google Scholar 

  9. Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993;45:205-251.

    Google Scholar 

  10. Peach MJ, Levens NR. Molecular approaches to the study of angiotensin receptors. Adv Exp Med Biol 1980;130:171-194.

    Google Scholar 

  11. Douglas JG. Angiotensin receptor subtypes of the kidney cortex. Am J Physiol 1987;253:F1-F7.

    Google Scholar 

  12. Gunther S. Characterization of angiotensin II receptor subtypes in rat liver. J Biol Chem 1984;259:7622-7629.

    Google Scholar 

  13. Bumpus FM, Catt KJ, Chiu AT, DeGasparo M, Goodfriend T, Husain A, Peach MJ, Taylor DG Jr., Timmermans PB. Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension 1991;17:720-721.

    Google Scholar 

  14. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 1991;351:233-235.

    Google Scholar 

  15. Sasaki K, Yamamo Y, Bardham S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin type-1 receptor. Nature 1991;351:230-232.

    Google Scholar 

  16. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 1993;268:24539-24542.

    Google Scholar 

  17. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 1993; 268:24543-24546.

    Google Scholar 

  18. Ruiz-Opazo N, Akimoto K, Herrera VL. Identification of a novel dual angiotensin II/vasopressin receptor on the basis of molecular recognition theory. Nat Med 1995;1:1074-1081.

    Google Scholar 

  19. Sugiura T, Wada A, Itoh T, Tojo H, Okamoto M, Imai E, Kamada T, Ueda N. Group II phospholipase A2 activates mitogen-activated protein kinase in cultured rat mesangial cells. FEBS Lett 1995;370:141-145.

    Google Scholar 

  20. Chaki S, Inagami T. Identification and characterization of a new binding site for angiotensin II in mouse neuroblastoma neuro-2A cells. Biochem Biophys Res Commun 1992;182: 388-394.

    Google Scholar 

  21. Unger T, Chung O, Csikos T, et al. Angiotensin receptors. J Hypertens Suppl 1996;14:S95-S103.

    Google Scholar 

  22. Ji H, Leung M, Zhang Y, Catt KJ, Sandberg K. Differential structural requirements for specific binding of nonpeptide and peptide antagonists to the AT1 angiotensin receptor. Identification of amino acid residues that determine binding of the antihypertensive drug losartan. J Biol Chem 1994;269: 16533-16536.

    Google Scholar 

  23. Noda K, Saad Y, Kinoshita A, Boyle TP, Graham RM, Husain A, Karnik SS. Tetrazole and carboxylate groups of angiotensin receptor antagonists bind to the same subsite by different mechanisms. J Biol Chem 1995;270:2284-2289.

    Google Scholar 

  24. Bihoreau C, Monnot C, Davies E, Teutsch B, Bernstein KE, Corvol P, Clauser E. Mutation of Asp74 of the rat angiotensin II receptor confers changes in antagonist affinities and abolishes G-protein coupling. Proc Natl Acad Sci USA 1993;90:5133-5137.

    Google Scholar 

  25. Yamano Y, Ohyama K, Kikyo M, et al. Mutagenesis and the molecular modeling of the rat angiotensin II receptor (AT1). J Biol Chem 1995;270:14024-14030.

    Google Scholar 

  26. Marie J, Maigret B, Joseph MP, Larguier R, Nouet S, Lombard C, Bonnafous JC. Tyr292 in the seventh transmembrane domain of the AT1A angiotensin II receptor is essential for its coupling to phospholipase C. J Biol Chem 1994;269:20815-20818.

    Google Scholar 

  27. Shirai H, Takahashi K, Katada T, Inagami T. Mapping of G protein coupling sites of the angiotensin II type 1 receptor. Hypertension 1995;25:726-730.

    Google Scholar 

  28. Ohyama K, Yamano Y, Chaki S, Kondo T, Inagami T. Domains for G-protein coupling in angiotensin II receptor type I: studies by site-directed mutagenesis. Biochem Biophys Res Commun 1992;189:677-683.

    Google Scholar 

  29. Hunyady L, Bor M, Balla T, Catt KJ. Critical role of a conserved intramembrane tyrosine residue in angiotensin II receptor activation. J Biol Chem 1995;270:9702-9705.

    Google Scholar 

  30. Inoue Y, Nakamura N, Inagami T. A review of mutagenesis studies of angiotensin II type 1 receptor, the three-dimensional receptor model in search of the agonist and antagonist binding site and the hypothesis of a receptor activation mechanism. J Hypertens 1997;15:703-714.

    Google Scholar 

  31. Regoli D, Park WK, Rioux F. Pharmacology of angiotensin. Pharmacol Rev 1974;69-123.

  32. Wright JW, Bechtholt AJ, Chambers SL, Harding JW. Angiotensin III and IV activation of the brain AT1 receptor subtype in cardiovascular function. Peptides 1996;17: 1365-1371.

    Google Scholar 

  33. Hollenberg MD. Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends Pharmacol Sci 1994;15:108-114.

    Google Scholar 

  34. Leduc I, Haddad P, Giasson E, Meloche S. Involvement of a tyrosine kinase pathway in the growth-promoting effects of angiotensin II on aortic smooth muscle cells. Mol Pharmacol 1995;48:582-592.

    Google Scholar 

  35. Premont RT, Inglese J, Lefkowitz RJ. Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 1995;9:175-182.

    Google Scholar 

  36. Lefkowitz RJ, Inglese J, Koch WJ, Pitcher J, Attramadal H, Caron MG. G-protein-coupled receptors: regulatory role of receptor kinases and arrestin proteins. Cold Spring Harb Symp Quant Biol 1992;57:127-133.

    Google Scholar 

  37. Paxton WG, Marrero MB, Klein JD, Delafontaine P, Berk BC, Bernstein KE. The angiotensin II AT1 receptor is tyrosine and serine phosphorylated and can serve as a substrate for the SRC family of tyrosine kinases. Biochem Biophys Res Commun 1994;200:260-267.

    Google Scholar 

  38. Kai H, Griendling KK, Lassegue B, Ollerenshaw JD, Runge MS, Alexander RW. Agonist-induced phosphorylation of the vascular type 1 angiotensin receptor. Hypertension 1994;24: 523-527.

    Google Scholar 

  39. Yang H, Lu D, Raizada MK. Angiotensin II-induced phosphorylation of the AT1 receptor from rat brain neurons. Hypertension 1997;30:351-357.

    Google Scholar 

  40. Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ. Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C. J Biol Chem 1996;271:13266–13272.

    Google Scholar 

  41. Marrero MB, Schieffer B, Paxton WG, Duff JL, Berk BC, Bernstein KE. The role of tyrosine phosphorylation in angiotensin II-mediated intracellular signalling. Cardiovasc Res 1995;30:530-536.

    Google Scholar 

  42. Hunyady L, Bor M, Baukal AJ, Balla T, Catt KJ. A conserved NPLFY sequence contributes to agonist binding and signal transduction but is not an internalization signal for the type 1 angiotensin II receptor. J Biol Chem 1995;270: 16602-16609.

    Google Scholar 

  43. Laporte SA, Servant G, Richard DE, Escher E, Guillemette G, Leduc R. The tyrosine within the NPXnY motif of the human angiotensin II type 1 receptor is involved in mediating signal transduction but is not essential for internalization. Mol Pharmacol 1996;49:89-95.

    Google Scholar 

  44. Pascal SM, Singer AU, Gish G, Yamazaki T, Shoelson SE, Pawson T, Kay LE, Forman K-JD. Nuclear magnetic resonance structure of an SH2 domain of phospholipase C-gamma 1 complexed with a high affinity binding peptide. Cell 1994;77:461-472.

    Google Scholar 

  45. Fantl WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993;62:453-481.

    Google Scholar 

  46. Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB, Bernstein KE. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem 1997;272:23382-23388.

    Google Scholar 

  47. Bolen JB, Rowley RB, Spana C, Tsygankov AY. The Src family of tyrosine protein kinases in hemopoietic signal transduction. FASEB J 1992;6:3403-3409.

    Google Scholar 

  48. Ishida M, Marrero MB, Schieffer B, Ishida T, Bernstein KE, Berk BC. Angiotensin II activates-pp60c-src in vascular smooth muscle cells. Circ Res 1995;77:1053-1059.

    Google Scholar 

  49. Marrero MB, Schieffer B, Bernstein KE. Electroporation of pp60c-src antibodies inhibits the angiotensin II activation of phospholipase C-c1 in rat aortic smooth muscle cells. J Biol Chem 1995;270:15734-15738.

    Google Scholar 

  50. Schieffer B, Paxton WG, Chai Q, Marrero MB, Bernstein KE. Angiotensin II controls p21ras activity via pp60c-src. J Biol Chem 1996;271:10329-10333.

    Google Scholar 

  51. Sadoshima J, Izumo S. The heterotrimeric Gq protein-coupled angiotensin II receptor activates p21ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 1996;15:775-787.

    Google Scholar 

  52. Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 1995;375:247-250.

    Google Scholar 

  53. Marrero MB, Schieffer B, Li B, Sun J, Harp JB, Ling BN. Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II-and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 1997;272:24684-24690.

    Google Scholar 

  54. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennoinen O. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 1994;19:222-227.

    Google Scholar 

  55. Polte TR, Naftilan AJ, Hanks SK. Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II. J Cell Biochem 1994; 55:106-119.

    Google Scholar 

  56. Leduc I, Meloche S. Angiotensin II stimulates tyrosine phosphorylation of the focal adhesion-associated protein paxillin in aortic smooth muscle cells. J Biol Chem 1995; 270:4401-4404.

    Google Scholar 

  57. Turner CE, Pietras KM, Taylor DS, Molloy CJ. Angiotensin II stimulation of rapid paxillin tyrosine phosphorylation correlates with the formation of focal adhesions in rat aortic smooth muscle cells. J Cell Sci 1995;108:333-342.

    Google Scholar 

  58. Okuda M, Kawahara Y, Nakayama I, Hoshijima M, Yokoyama M. Angiotensin II transduces its signal to focal adhesions via angiotensin II type 1 receptors in vascular smooth muscle cells. FEBS Lett 1995;368:343-347.

    Google Scholar 

  59. Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 1995;15:954-963.

    Google Scholar 

  60. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(21)-induced regulation of ion channel and MAP kinase functions. Nature 1995;376: 737-745.

    Google Scholar 

  61. Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Sasaki T. Cloning and characterization of cell adhesion kinase b, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem 1995;270:21206-21219.

    Google Scholar 

  62. Yu H, Li X, Marchetto GS, et al. Activation of a novel calcium-dependent protein-tyrosine kinase. J Biol Chem 1996; 271:29993-29998.

    Google Scholar 

  63. Li X, Earp HS. Paxillin is tyrosine-phosphorylated by and preferentially associates with the calcium-dependent tyrosine kinase in rat liver epithelial cells. J Biol Chem 1997;272:14341-14348.

    Google Scholar 

  64. Brinson AE, Li X, Yaqin H, Hunter D, Earp HS, Graves LM. Expression and regulation of CADTK (PYK-2) in vascular smooth muscle cells by growth factors and extracellular nucleotides. Submitted.

  65. Daub H, Weiss FU, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996;379:557-560.

    Google Scholar 

  66. Linseman DA, Benjamin CW, Jones DA. Convergence of angiotensin II and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J Biol Chem 1995;270:12563-12568.

    Google Scholar 

  67. Stitt TN, Conn G, Gore M, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 1995;80: 661-670.

    Google Scholar 

  68. O'Bryan JP, Frye RA, Cogswell PC, et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 1991;11:5016-5031.

    Google Scholar 

  69. Li R, Chen J, Hammonds G, et al. Identification of Gas6 as a growth factor for human Schwann cells. J Neurosci 1996;16:2012-2019.

    Google Scholar 

  70. Ling L, Kung HJ. Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase. Mol Cell Biol 1995; 15:6582-6592.

    Google Scholar 

  71. Nakano T, Higashino K, Kikuchi N, Kishino J, Nomura K, Fujita H, Ohara O, Arita H. Vascular smooth muscle cell-derived, Gla-containing growth-potentiating factor for Ca2++ mobilizing growth factors. J Biol Chem 1995;270: 5702-5705.

    Google Scholar 

  72. Rhee SG, Choi KD. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 1992;267: 12393-12396.

    Google Scholar 

  73. Smrcka AV, Hepler JR, Brown KO, Sternweis PC. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 1991;251:804-807.

    Google Scholar 

  74. Taylor SJ, Chae HZ, Rhee SG, Exton JH. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature 1991;350:516-518.

    Google Scholar 

  75. Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, Rhee SG. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell 1991;65:435-441.

    Google Scholar 

  76. Marrero MB, Paxton W, Duff JD, Berk BC, Bernstein KE. Angiotensin II stimulates tyrosine phosphorylation of phosplipase C-cl in vascular smooth muscle cells. J Biol Chem 1994;269:10935-10939.

    Google Scholar 

  77. Kudoh S, Komuro I, Mizuno T, Yamazaki T, Zou Y, Shiojima I, Takekoshi N, Yazaki Y. Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 1997;80:139-146.

    Google Scholar 

  78. Zohn IE, Yu H, Li X, Cox AD, Earp HS. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase. Mol Cell Biol 1995;15:6160-6168.

    Google Scholar 

  79. Schmitz U, Berk BC. Angiotensin II signal transduction. Stimulation of multiple mitogen-activated protein kinase pathways. Trends Endocrinol Metab 1997;8:261-266.

    Google Scholar 

  80. Abe J, Kusuhara M, Ulevitch RJ, Berk BC, Lee JD. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem 1996;271:16586-16590.

    Google Scholar 

  81. Duff JL, Berk BC, Corson MA. Angiotensin II stimulates the pp44 and pp42 mitogen-activated protein kinases in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 1992;188:257-264.

    Google Scholar 

  82. Tsuda T, Kawahara Y, Ishida Y, Koide M, Shii K, Yokoyama M. Angiotensin II stimulates two myelin basic protein/microtubule-associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 1992;71:620-630.

    Google Scholar 

  83. Chao T-SO, Foster DA, Rapp UR, Rosner MR. Differential raf requirement for activation of mitogen-activated protein kinase by growth factors, phorbol esters, and calcium. J Biol Chem 1994;269:7337-7341.

    Google Scholar 

  84. Butcher RD, Schollmann C, Marme D. Angiotensin II mediates intracellular signalling in vascular smooth muscle cells by activation of tyrosine-specific protein kinases and c-raf-1. Biochem Biophys Res Commun 1993;196:1280-1287.

    Google Scholar 

  85. Force T, Kyriakis JM, Avruch J, Bonventre JV. Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and-independent pathways in glomerular mesangial cells. J Biol Chem 1991;266:6650-6656.

    Google Scholar 

  86. Molloy CJ, Taylor DS, Weber H. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 1993;268:7338-7345.

    Google Scholar 

  87. Touhara K, Hawes BE, van Biesen T, Lefkowitz RJ. G protein beta gamma subunits stimulate phosphorylation of Shc adapter protein. Proc Natl Acad Sci USA 1995;92: 9284-9287.

    Google Scholar 

  88. Schorb W, Peeler TC, Madigan NN, Conrad KM, Baker KM. Angiotensin II-induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J Biol Chem 1994;269: 19626-19632.

    Google Scholar 

  89. Buday L, Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 1993;73:611-620.

    Google Scholar 

  90. Takahashi T, Kawahara Y, Okuda M, Ueno H, Takeshita A, Yokoyama M. Angiotensin II stimulates mitogen-activated protein kinases and protein synthesis by a Ras-independent pathway in vascular smooth muscle cells. J Biol Chem 1997;272:16018-16022.

    Google Scholar 

  91. Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 1994;369:418-420.

    Google Scholar 

  92. Crespo P, Cachero TG, Xu N, Gutkind JS. Dual effect of beta-adrenergic receptors on mitogen-activated protein kinase. Evidence for a beta gamma-dependent activation and a G alpha s-cAMP-mediated inhibition. J Biol Chem 1995; 270:25259-25265.

    Google Scholar 

  93. Pitcher J, Touhara K, Payne E, Lefkowitz R. Pleckstrin homology domain-mediated membrane association and activation of the β-adrenergic receptor kinase requires coordinate interaction with Gβγ subunits and lipid. J Biol Chem 1995;270:11707-11710.

    Google Scholar 

  94. Inglese J, Koch WJ, Touhara K, Lefkowitz RJ. G beta gamma interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci 1995;20:151-156.

    Google Scholar 

  95. Griendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA, Jr. Alexander RW. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 1986; 261:5901-5906.

    Google Scholar 

  96. Lassegue B, Alexander RW, Clark M, Akers M, Griendling KK. Phosphatidylcholine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth-muscle cells. Biochem J 1993;292:509-517.

    Google Scholar 

  97. Rao GN, Lassegue B, Alexander RW, Griendling KK. Angiotensin II stimulates phosphorylation of high-molecular-mass cytosolic phospholipase A2 in vascular smoothmuscle cells. Biochem J 1994;299:197-201.

    Google Scholar 

  98. Griendling KK, Ushio F-M, Lassegue B, Alexander RW. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 1997;29:366-373.

    Google Scholar 

  99. Rao GN, Lass'egue B, Griendling KK, Alexander RW, Berk BC. Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Res 1993;21:1259-1263.

    Google Scholar 

  100. Rao GN, Baas AS, Glasgow WC, Eling TE, Runge MS, Alexander RW. Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. J Biol Chem 1994;269:32586-32591.

    Google Scholar 

  101. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. Expression of AT2 receptors in the developing rat fetus. J Clin Invest 1991;88:921-933.

    Google Scholar 

  102. Kang J, Posner P, Sumners C. Angiotensin II type 2 receptor stimulation of neuronal K1 currents involves an inhibitory GTP binding protein. Am J Physiol 1994;267: C1389-C1397.

    Google Scholar 

  103. Buisson B, Bottari SP, de G-M, Gallo P-N, Payet MD. The angiotensin AT2 receptor modulates T-type calcium current in non-differentiated NG108-15 cells. FEBS Lett 1992; 309:161-164.

    Google Scholar 

  104. Buisson B, Laflamme L, Bottari SP, de G-M, Gallo P-N, Payet MD. A G protein is involved in the angiotensin AT2 receptor inhibition of the T-type calcium current in non-differentiated NG108-15 cells. J Biol Chem 1995;270: 1670-1674.

    Google Scholar 

  105. Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N, de G-M. The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 1992;183:206-211.

    Google Scholar 

  106. Yamada T, Horiuchi M, Dzau VJ. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 1996;93:156-60.

    Google Scholar 

  107. Duff JL, Monia BP, Berk BC. Mitogen-activated protein (MAP) kinase is regulated by the MAP kinase phosphatase (MKP-1) in vascular smooth muscle cells. Effect of actinomycin D and antisense oligonucleotides. J Biol Chem 1995;270: 7161-7166.

    Google Scholar 

  108. Duff JL, Marrero MB, Paxton WG, Charles CH, Lau LF, Bernstein KE, Berk BC. Angiotensin II induces 3CH134, a protein-tyrosine phosphatase, in vascular smooth muscle cells. J Biol Chem 1993;268:26037-26040.

    Google Scholar 

  109. Ali MS, Schieffer B, Delafontaine P, Bernstein KE, Ling BN, Marrero MB. Angiotensin II stimulates tyrosine phosphorylation and activation of insulin receptor substrate 1 and protein-tyrosine phosphatase 1D in vascular smooth muscle cells. J Biol Chem 1997;272:12373-12379.

    Google Scholar 

  110. Suero JA, Berk BC. Angiotensin II prevents apopotosis by differential effects on mitogen activated protein kinases (MAPK): JNK, p38, and ERK1/2 (abstract). Circulation 1996;94:I–281.

    Google Scholar 

  111. Pollman MJ, Yamada T, Horiuchi M, Gibbons GH. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Res 1996;79:748-756.

    Google Scholar 

  112. Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 1991; 68:450-456.

    Google Scholar 

  113. Farhy RD, Ho KL, Carretero OA, Scicli AG. Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun 1992;182:283-288.

    Google Scholar 

  114. Osterrieder W, Muller RK, Powell JS, Clozel JP, Hefit F, Baumgartner HR. Role of angiotensin II in injury-induced neointima formation in rats. Hypertension 1991;18: II60-II64.

    Google Scholar 

  115. van Kleef EM, Fingerle J, Daemen MJ. Angiotensin II-in-duced progression of neointimal thickening in the balloon-injured rat carotid artery is AT1 receptor mediated. Arterioscler Thromb Vasc Biol 1996;16:857-863.

    Google Scholar 

  116. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 1995;92: 10663-10667.

    Google Scholar 

  117. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995;95:651-657.

    Google Scholar 

  118. Meffert S, Stoll M, Steckelings UM, Bottari SP, Unger T. The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 1996;122:59-67.

    Google Scholar 

  119. Gonzalez CB, Herrera VL, Ruiz-Opazo N. Renal immunocytochemical distribution and pharmacological properties of the dual angiotensin II/AVP receptor. Hypertension 1997; 29:957-61.

    Google Scholar 

  120. Sugiura N, Hagiwara H, Hirose S. Molecular cloning of porcine soluble angiotensin-binding protein. J Biol Chem 1992; 267:18067-18072.

    Google Scholar 

  121. Kato A, Sugiura N, Hagiwara H, Hirose S. Cloning, amino acid sequence and tissue distribution of porcine thimet oligopeptidase. A comparison with soluble angiotensin-binding protein. Eur J Biochem 1994;221:159-65.s

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berk, B.C. Angiotensin II Receptors and Angiotensin II-Stimulated Signal Transduction. Heart Fail Rev 3, 87–99 (1998). https://doi.org/10.1023/A:1009758627202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009758627202

Navigation