Skip to main content
Log in

Morphological Models for the Collapse of Area Features in Digital Map Generalization

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

“Collapse” is an essential operation for the manipulation of area features in digital data generalization. This operation can be categorized into two types: complete collapse and partial collapse. The former is composed of another two types: area-to-point and area-to-line collapse. In this paper, a set of algebraic models built upon the operators in mathematical morphology is described for the area-to-line collapse and partial collapse operations. For the area-to-line collapse operation, a modified skeleton algorithm is presented. For the partial collapse operation, a procedure is designed which consists of a set of operations, i.e., the skeletonization, separation of areal and linear parts, simplification of areas and an overlay operation. These models are tested using real map data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Arcelli, L.P. Cordella, and S. Levialdi. “From Local Maxima to Connected Skeletons,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 3(2):134-143, 1981.

    Google Scholar 

  2. R. Chithambaram, K. Beard, and R. Barrera. “Skeletonising Polygons for Map Generalisation,” Technical Papers of ACSM-ASPRS Annual Convention, Auto-Carto 10, Baltimore, Maryland, March, Vol. 6:44-55, 1991.

    Google Scholar 

  3. M. de Berg, M. van Kreveld and S. Schirra. “A New Approach to Subdivision Simplification,” Technical Papers of ACSM/ASPRS Annual Convention, Auto-Carto 12, Charlotte, North Carolina, February, Vol. 4:79- 88, 1995.

    Google Scholar 

  4. A.A. DeLucia and R.B. Black. “A Comprehensive Approach to Automatic Feature Generalisation,” in Proc. of 13th International Cartographic Conference, Morelia, Mexico, October, Vol. 4:169-192, 1987.

    Google Scholar 

  5. M.J.E. Golay. “Hexagonal Parallel Pattern Transformations,” IEEE Transaction on Computers, Vol. C-18(8):733-740, 1969.

    Google Scholar 

  6. M. Goodchild and D. Quattrochi. “Introduction: Scale, Multiscaling, Remote Sensing and GIS,” in D. Quattrochi and M. Goodchild (eds), Scale in Remote Sensing and GIS, CRC Press, 1-12, 1997.

  7. R. Haralick, S. Sternberg, and X. Zhuang. “Image Analysis Using Mathematical Morphology,” IEEE Transactions of Pattern Analysis and Machine Intelligence, Vol. 9(4):532-550, 1987.

    Google Scholar 

  8. E. Jäger. “Untersuchungen zur Kartographichen Symbolisierung und Verdrangung in Rasterdatenformat,” Doctoral Thesis, Hannover University, (in German), 1990.

    Google Scholar 

  9. C.B. Jones, G.Ll. Bundy, and J.M. Ware. “Map Generalisation with a Triangulated Data Structure,” Cartography and Geographical Information System, Vol. 22(4):317-331, 1995.

    Google Scholar 

  10. Z. Li. “Mathematical Morphology in Digital Generalisation of Raster Map Data,” Cartography, Vol. 23(1):1-10, 1994.

    Google Scholar 

  11. Z. Li. “Scale issues in geographical information Science,” in Proc. of International Workshop on Dynamic & Multi-dimensional GIS, 25-26 August 1997, Hong Kong, 143-158, 1998.

  12. Z. Li and S. Openshaw. “Algorithms for Objective Generalisation of Line Features Based on the Natural Principle,” International Journal of Geographical Information Systems, Vol. 6(5):373-389, 1992.

    Google Scholar 

  13. Z. Li and B. Su. “Algebraic Models for Feature Displacement in the Generalisation of Digital Map Data Using Morphological Techniques,” Cartographica, Vol. 32(3):39-56, 1995.

    Google Scholar 

  14. G. Matheron. “Random Sets and Integral Geometry,” John Wiley and Sons, New York, USA, 1975.

    Google Scholar 

  15. F. Meyer. “Skeletons and Perceptual Graphs,” Signal Processing, Vol. 16(4):335-363, 1989.

    Article  Google Scholar 

  16. M. Monmonier. “Raster-mode area generalisation for land use and land cover maps,” Cartographica, Vol. 20(4):65-91, 1983.

    Google Scholar 

  17. J.C. Müller and Z.S. Wang. “Area-patch Generalisation: A Competitive Approach,” The Cartographic Journal, Vol. 29(2):137-144, 1992.

    Google Scholar 

  18. L. Schylberg. “Computational Methods for Generalization of Cartographic Data in a Raster Environment,” Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, 1993.

    Google Scholar 

  19. J. Serra. “Image Processing and Mathematical Morphology,” Academic Press, New York, N.Y., 1982.

    Google Scholar 

  20. F.Y. Shih and C.C. Pu. “A Skeletonisation Algorithm by Maxima Tracking on Euclidean Distance Transform,” Pattern Recognition, Vol. 28(3):331-341, 1995.

    Article  Google Scholar 

  21. B. Su and Z. Li. “An Algebraic Basis for Digital Generalisation of Area-patches Based on Morphological Techniques,” The Cartographic Journal, Vol. 32(2):148-153, 1995.

    Google Scholar 

  22. B. Su, Z. Li, G. Lodwick, and J.C. Müller. “Algebraic Models for the Aggregation of Area Features Based upon Morphological Operators,” International Journal of Geographical Information Science, Vol. 11(3):233-246, 1997.

    Article  Google Scholar 

  23. B. Su, Z. Li, and G. Lodwick. “Morphological transformation for the elimination of area features in digital map generalization,” Cartography, Vol. 26(2):23-30, 1997.

    Google Scholar 

  24. H. Talbot and L. Vincent. “Euclidean Skeletons and Conditional Bisectors,” in Proc. of SPIE Visual Communication and Image Processing, Boston, MA, November, Vol. 1818:862-876, 1992.

    Google Scholar 

  25. L. Vincent. “Efficient Computation of Various Types of Skeletons,” in Proc. of SPIE Conference, Medical Imaging V: Image Processing, San Jose, California, June, Vol. 1445:297-311, 1991.

    Google Scholar 

  26. Z. Wang and J.C. Müller. “Complex Coastline Generalisation,” Cartography and Geographic Information Systems, Vol. 20(3):96-106, 1993.

    Google Scholar 

  27. R. Weibel. “Amplified intelligence and rule-based systems,” In Map Generalization: Making Rules for Knowledge Representation, edited by B. Barbara and R. McMaster, Longman Scientific & Technical 172- 186, 1991.

  28. R. Weibel. “A Typology of Constraints to Line Simplification,” in Proc. of 7th International Symposium on Spatial Data Handling, Delft, The Netherlands, August, Vol. 2, Sec. 9A:1-14, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, B., Li, Z. & Lodwick, G. Morphological Models for the Collapse of Area Features in Digital Map Generalization. GeoInformatica 2, 359–382 (1998). https://doi.org/10.1023/A:1009757422454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009757422454

Navigation