Plant Ecology

, Volume 133, Issue 2, pp 153–167 | Cite as

Convergent seed germination in South African fynbos and Californian chaparral

  • Jon E. Keeley
  • William J. Bond


California chaparral and South African fynbos are fire-prone communities dominated by species exhibiting remarkable similarities in germination response. In both regions there are a substantial number of species with germination stimulated chemically by charred wood and smoke. This type of germination behaviour has arisen independently in distantly related families and is interpreted as convergent evolution. Heat-shock is also an important germination trigger that is widespread, although in both regions it is most common in the same families. Phylogeney may play an important role in the presence of this postfire germination cue in both regions, but a much more rigorous analysis is required to show that this trait represents a single unique event in each lineage. In both regions, germination response is not randomly distributed across growth forms and there are marked regional similiarities in the type of germination behaviour associated with certain growth forms. Geophytes largely lack refractory seeds, which require fire-type cues for germination, but the presence of fire-stimulated flowering of bulbs and corms may time recruitment to subsequent postfire years. Annuals that cue germination to postfire conditions are predominantly triggered by chemicals from smoke and/or charred wood.

Chaparral Convergent Evolution Fynbos Germination Heat-shock Phylogenetics Smoke 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, I. C., Levine, J. S., Poth, M. A. & Riggan, P. J. 1988. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning. J. Geophys. Res. 93: 3893- 3898.Google Scholar
  2. Arroyo, M. T. K., Cavieres, L., Marticorena, C. & Munoz-Schick, M. 1994. Convergence in the mediterranean floras in central Chile and California: insights from comparative biogeography. Pp. 43-88. In: M. T. K. Arroyo, P. H. Zedler, & M. D. Fox (eds), Ecology and biogeography of mediterranean ecosystems in Chile, California, and Australia, Springer-Verlag, New York.Google Scholar
  3. Atwater, B. R. 1980. Germination, dormancy and morphology of the seeds of herbaceous ornamental plants. Seed Sci. Techn. 8: 523-573.Google Scholar
  4. Baldwin, I. T., Staszak-Kozinski, L. & Davidson, R. 1994. Up in smoke. 1. Smoke-derived germination cues for postfire annual, Nicotiana attentuataTorr ex Watson. J. Chem. Ecol. 20: 2345-2372.Google Scholar
  5. Ballard, L. A. T. 1973. Physical barriers to germination. Seed Sci. Techn. 1: 285-303.Google Scholar
  6. Barbour, M. G. & Minnich, R. A. 1990. The myth of chaparral convergence. Israel J. Bot. 39: 435-463.Google Scholar
  7. Baxter, B. J. M., Granger, J. E., & van Staden, J. 1995. Plant-derived smoke and seed germination: is all smoke good smoke? That is the burning question. S. Afr. J. Bot. 61: 275-278.Google Scholar
  8. Bell, D. T., Plummer, J. A. & Taylor, S. K. 1993. Seed germination ecology in southwestern Western Australia. Bot. Rev. 59: 24-73.Google Scholar
  9. Bond, W. J. 1985. Canopy-stored seed reserves (serotiny) in Cape Proteaceae. S. Afr. J. Bot. 39: 435-463.Google Scholar
  10. Bond, W. J., Vlok, J. & Viviers, M. 1984. Variation in seedling recruitment of Cape Proteaceae after fire. J. Ecol. 72: 209-221.Google Scholar
  11. Bond, W. J., Roux, D. L. & Erntzen, R. 1990. Fire intensity and regeneration of myrmecochorous Proteaceae. S. Afr. J. Bot. 56: 326-330.Google Scholar
  12. Bond, P.& Goldblatt, P. 1984. Plants of the Cape flora. A descriptive catalogue. J. S. Afr. Bot. Suppl. No. 13.Google Scholar
  13. Brits, G. J. 1987. Germination depth vs. temperature requirements in naturally dispersed seeds of Leucospermum cordifoliumand L. cuneiforme(Proteaceae). S. Afr. J. Bot. 53: 119-124.Google Scholar
  14. Brits, G. J., Calitz, F. J., Brown, N. A. C. & Manning, J. C. 1993. Desiccation as the active principle in heat-stimulated seed germination of LeucospermumR. Br. (Proteaceae) in fynbos. New Phytol. 125: 397-403.Google Scholar
  15. Brown, N. A. C. 1993a. Promotion of germination of fynbos seeds by plant-derived smoke. New Phytol. 123: 575-584.Google Scholar
  16. Brown, N. A. C. 1993b. Seed germination in the fynbos fire ephemeral, Syncarpha vestita(L.) B. Nord. is promoted by smoke, aqueous extracts of smoke and charred wood derived from burning the ericoid-leaved shrub, Passerina vulgarisThoday. Inter. J. Wildland Fire 3: 203-206.Google Scholar
  17. Brown, N. A. C., Jamieson, H. & Botha, P. A. 1995. Stimulation of seed germination in South African species of Restionaceae by plant-derived smoke. Pl. Grow. Regul. 15: 93-100.Google Scholar
  18. Brown, N. A. C., Kotze, G. & Botha, P. A. 1993. The promotion of seed germination of Cape Ericaspecies by plant-derived smoke. Seed Sci. Techn. 21: 573-580.Google Scholar
  19. Brown, P. J., Manders, P. T., Bands, D. P., Kruger, F. J. & Andrag, R. H. 1991. Prescribed burning as a conservation management practice: a case history from the Cedarberg mountins, Cape Province, South Africa. Biol. Conserv. 56: 133-150.Google Scholar
  20. Bullock, S. H. 1976. Comparison of the distribution of seed and parent-plant populations. Southw. Nat. 21: 383-389.Google Scholar
  21. Cody, M. L. & Mooney, H. A. 1978. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Ann. Rev. Ecol. Syst. 9: 265-321.Google Scholar
  22. Corner, E. J. H. 1976. The seeds of dicotyledons. Volume 1. Cambridge University Press, New York.Google Scholar
  23. Cowling, R. M. & Campbell, B. M. 1980. Convergence in vegetation structure in the Mediterranean communities of California, Chile, and South Africa. Vegetatio 43: 191-197.Google Scholar
  24. Dafni, A., Cohen, D. & Noy-Meir, I. 1981. Life-cycle variation in geophytes. Ann. Mo. Bot. Gard. 68: 652-660.Google Scholar
  25. de Lange, J. H. & Boucher, C. 1990. Autecological studies on Audouinia capitata(Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot. 56: 700-703.Google Scholar
  26. de Lange, J. H. & Boucher, C. 1993. Autecological studies on Audouinia capitata(Bruniaceae). 8. Role of fire in regeneration S. Afr. J. Bot. 59: 188-202.Google Scholar
  27. di Castri, F. & Mooney, H. A. (eds.). 1973. Mediterranean ecosystems: origin and structure. Springer-Verlag, New York.Google Scholar
  28. Dixon, K. W., Roche, S. & Pate, J. S. 1995. The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia 101: 185-192.Google Scholar
  29. Donoghue, M. J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43: 1137-1156.Google Scholar
  30. Eggleton, P. & Vane-Wright, R. I. (eds). 1994. Phylogenetics and ecology. Academic Press, New York.Google Scholar
  31. Egley, G. H. 1989. Water-impermeable seed coverings as barriers to germination. Pp. 207-223. In: R. B. Taylorson (ed.), Recent advances in the development and germination of seeds, Plenum Press, New York.Google Scholar
  32. Gill, A. M. 1981. Adaptive responses of Australian vascular plant species to fires. Pp. 243-272. In: A. M. Gill, R. H. Groves, & I. R. Noble (eds), Fire and the Australian biota, Australian Academy of Science, Canberra, Australian Capital Territory.Google Scholar
  33. Hickman, J. C. (ed.). 1993. The Jepson manual. Higher plants of California. Univ. Calif. Press, Los Angeles.Google Scholar
  34. J¨ager, A. K., Rabe, T., van Staden, J. 1996. Food-flavouring smoke extracts promote seed germination. S. Afr. J. Bot. 62: 282-284.Google Scholar
  35. Jefferey, D. J., Holmes, P. M. & Rebelo, A. G. 1988. Effects of dry heat on seed germination in selected indigenous and alien legume species in South Africa. S. Afr. J. Bot. 54: 28-34.Google Scholar
  36. Jones, C. S. & Schlesinger, W. H. 1980. Emmenanthe penduli flora(Hydrophyllaceae): further consideration of germination response. Madroño 27: 122-125.Google Scholar
  37. Keeley, J. E. 1982. Distribution of lightning and man-caused wild-fires in California. Pp. 431-437. In: C. E. Conrad & W. C. Oechel (eds), Proceedings of the symposium on dynamics and management of mediterranean-type ecosystems, USDA For. Serv., Pac. Southw. For. Range Exp. Stat., Gen. Techn. Rep. PSW-58.Google Scholar
  38. Keeley, J. E. 1986. Resilience of mediterranean shrub communities to fire. Pp. 95-112. In: B. Dell, A. J. M. Hopkins, & B. B. Lamont (eds), Resilience in editerranean-type ecosystems, Dr. W. Junk, Dordrecht, The Netherlands.Google Scholar
  39. Keeley, J. E. 1987. Role of fire in seed germination of woody taxa in California chaparral. Ecology 68: 434-443.Google Scholar
  40. Keeley, J. E. 1991. Seed germination and life history syndromes in the California chaparral. Bot. Rev. 57: 81-116.Google Scholar
  41. Keeley, J. E. 1992. A Californian's view of fynbos. Pp. 372-388. In: R. M. Cowling (ed.), The ecology of fynbos, Oxford Univ. Press, Cape Town.Google Scholar
  42. Keeley, J. E. 1993. Smoke-induced flowering in the fire-lily Cyrtanthus ventricosus. S. Afr. J. Bot. 59: 638.Google Scholar
  43. Keeley, J. E. 1994. Seed-germination patterns in fire-prone mediterranean-climate regions. Pp. 239-273. In: T. K. Arroyo, P. H. Zedler, & M. D. Fox (eds), Ecology and biogeography of mediterranean ecosystems in Chile, California, and Australia, Springer-Verlag, New York.Google Scholar
  44. Keeley, J. E. & Fotheringham, C. J. 1997a. Trace gas emissions in smoke-induced seed germination. Science 276: 1248-1251.Google Scholar
  45. Keeley, J. E. & Fotheringham, C. J. 1997b. Smoke-induced seed germination in Californian chaparral. Ecology (in submission).Google Scholar
  46. Keeley, J. E. & Keeley, S. C. 1984. Postfire recovery of California coastal sage scrub. Am. Midl. Nat. 111: 105-117.Google Scholar
  47. Keeley, J. E., Morton, B. A., Pedrosa, A., & Trotter, P. 1985. Role of allelopathy, heat, and charred wood in the germination of chaparral herbs and suffrutescents. J. Ecol. 73: 445-458.Google Scholar
  48. Keeley, J. E. & Zedler, P. H. Evolution of life histories in pines. In: D. Richardson & R. Cowling (eds), Ecology and biogeography of pines. Cambridge Univ. Press, Cambridge, U. K. (in press).Google Scholar
  49. Keeley, S. C. & Pizzorno, M. 1986. Charred wood stimulated germination of two fire-following herbs of the California chaparral and the role of hemicellulose. Amer. J. Bot. 73: 1289-1297.Google Scholar
  50. Kilian, D. & Cowling, R. M. 1992. Comparative seed biology and co-existence of two fynbos shrub species. J. Veg. Sci. 3: 637-646.Google Scholar
  51. Kruger, F. J. 1983. Plant community diversity and dynamics in relation to fire. Pp. 446-472. In: F. J. Kruger, D. T. Mitchell, & J. U. M. Jarvis (eds), Mediterranean-type ecosystems. The role of nutrients, Springer-Verlag, New York.Google Scholar
  52. Le Maitre, D. C. & Brown, P. J. 1992. Life cycles and fire-stimulated flowering in geophytes. Pp. 145-160. In: B. W. van Wilgen, D. M. Richardson, F. J. Kruger, & H. J. van Hensbergen (eds), Fire in South African mountain fynbos, Springer-Verlag, Berlin.Google Scholar
  53. Le Maitre, D. C. & Midgley, J. J. 1992. Plant reproductive ecology. Pp. 135-174. In: R. M. Cowling (ed.), The ecology of fynbos, Oxford Univ. Press, Cape Town.Google Scholar
  54. Losos, J. B. 1996. Phylogenetic perspectives on community ecology. Ecology 77: 1344-1354.Google Scholar
  55. Martin, A. C. 1946. The comparative internal morphology of seeds. Amer. Midl. Nat. 36: 513-660.Google Scholar
  56. Mazer, S. J. 1989. Ecological, taxonomic, and life history correlates of seed mass among Indiana dune angiosperms. Ecol. Monogr. 59: 153-175.Google Scholar
  57. Mooney, H. A. (ed.). 1977. Convergent evolution of Chile and California Mediterranean climate ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
  58. Mooney, H. A. & Conrad, C. E. (eds). 1977. Proceedings of the symposium on environmental consequences of fire and fuel management in Mediterranean ecosystems. USDA For. Serv., Gen. Techn. Rep. WO-3.Google Scholar
  59. Musil, C. F. & de Witt, D. M. 1991. Heat-stimulated germination in two Restionaceae species. S. Afr. J. Bot. 57: 175-176.Google Scholar
  60. Pagel, M. D. 1994. The adaptationist wager. Pp. 29-51. In: P. Eggleton and R. I. Vane-Wright (eds), Phylogenetics and ecology, Academic Press, San Diego.Google Scholar
  61. Peet, R. K. 1978. Ecosystem convergence. Amer. Nat. 112: 441-444.Google Scholar
  62. Pierce, S. M., Esler, K. & Cowling, R. M. 1995. Smoke-induced germination of succulents (Mesembryanthemaceae) from fire-prone and fire-free habitats in South Africa. Oecologia 102: 520-522.Google Scholar
  63. Pierce, S. M. & Moll, E. J. 1994. Germination ecology of six shrubs in fire-prone Cape fynbos. Vegetatio 110: 25-41.Google Scholar
  64. Quinlivan, B. J. 1971. Seed coat impermeability in legumes. J. Aus. Inst. Agr. Sci. 37: 283-295.Google Scholar
  65. Rundel, P. W. 1996. Monocotyledonous geophytes in the California flora. Madroño 43: 355-368.Google Scholar
  66. Shmida, A. & Whittaker, R. H. 1984. Convergence and nonconvergence of Mediterranean type communities in the Old and the New World. Pp. 5-11. In: N. S. Margaris, M. Arianoustou-Faraggitaki, & W. C. Oechel (eds), Being alive on land, Dr. W. Junk, The Hague, The Netherlands.Google Scholar
  67. Stone, E. C. 1951. The stimulative effect of fire on the flowering of the golden brodiaea (Brodiaeae ixiodesWats. var. lugensJeps.). Ecology 32: 534-537.Google Scholar
  68. Trabaud, L. & Prodon, R. 1993. Fire in mediterranean ecosystems. Commission of the European Communities, Banyuls-Sur-Mer, France. 441 pp.Google Scholar
  69. van Staden, J., Drewes, F. E. & Jager, A. K. 1995. The search for germination stimulants in plant-derived smoke extracts. S. Afr. J. Bot. 61: 260-263.Google Scholar
  70. van Wilgen, B. W., Richardson, D. M., Kruger, F. J. & van Hensbergen, H. J. (eds.). 1992. Fire in South African mountain fynbos. Ecosystem community and species response at Swartboskloof. Springer-Verlag, Berlin.Google Scholar
  71. Wicklow, D. T. 1977. Germination response in Emmenanthe penduliflora(Hydrophyllaceae). Ecology 58: 201-205.Google Scholar
  72. Young, J. A. & Young, C. G. (eds). 1992. [Revision of] Seeds of woody plants in North America. Dioscorides Press, Portland,Oregon.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jon E. Keeley
    • 1
  • William J. Bond
    • 2
  1. 1.Department of BiologyOccidental CollegeLos AngelesUSA
  2. 2.Botany DepartmentUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations