Skip to main content
Log in

A Higher Level Bailey Lemma: Proof and Application

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In a recent letter, new representations were proposed for the pair of sequences (γ,δ), as defined formally by Bailey in his famous lemma. Here we extend and prove this result, providing pairs (γ,δ) labelled by the Lie algebra AN − 1, two nonnegative integers ℓ and k and a partition λ, whose parts do not exceed N − 1. Our results give rise to what we call a “higher level” Bailey lemma. As an application it is shown how this lemma can be applied to yield general q-series identities, which generalize some well-known results of Andrews and Bressoud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Agarwal, G.E. Andrews, and D.M. Bressoud, “The Bailey lattice,” J. Ind. Math. Soc. 51 (1987), 57-73.

    Google Scholar 

  2. G.E. Andrews, “Some new partition theorems,” J. Combin. Theory 2 (1967), 431-436.

    Google Scholar 

  3. G.E. Andrews, “A generalization of the Göllnitz-Gordon partition theorems,” Proc. Amer. Math. Soc. 18 (1967), 954-952.

    Google Scholar 

  4. G.E. Andrews, “An analytic generalization of the Rogers-Ramanujan identities for odd moduli,” Proc. Nat. Acad. Sci. (USA) 71 (1974), 4082-4085.

    Google Scholar 

  5. G.E. Andrews, “Problems and prospects for basic hypergeometric functions,” in The Theory and Applications of Special Functions (R. Askey, ed.), Academic Press, New York, 1975, pp. 191-224.

    Google Scholar 

  6. G.E. Andrews, “The theory of partitions,” Encyclopedia of Mathematics, Vol. 2, Addison-Wesley, Reading, MA, 1976.

    Google Scholar 

  7. G.E. Andrews, “Multiple series Rogers-Ramanujan type identities,” Pacific J. Math. 114 (1984), 267-283.

    Google Scholar 

  8. W.N. Bailey, “Identities of the Rogers-Ramanujan type,” Proc. London Math. Soc. 50(2) (1949), 1-10.

    Google Scholar 

  9. A. Berkovich, “Fermionic counting of RSOS-states and Virasoro character formulas for the unitary minimal series M(v, v + 1). Exact results,” Nucl. Phys. B 431 (1994), 315-348.

    Google Scholar 

  10. A. Berkovich and B.M. McCoy, “Continued fractions and fermionic representations for characters of M(p, p′) minimal models,” Lett. Math. Phys. 37 (1996), 49-66.

    Google Scholar 

  11. A. Berkovich, B.M. McCoy, and W.P. Orrick, “Polynomial identities, indices, and duality for the N = 1 superconformal model SM(2, 4v),” J. Stat. Phys. 83 (1996), 795-837.

    Google Scholar 

  12. A. Berkovich, B.M. McCoy, and A. Schilling, “N = 2 supersymmetry and Bailey pairs,” Physica A 228 (1996), 33-62.

    Google Scholar 

  13. A. Berkovich, B.M. McCoy, and A. Schilling, “Rogers-Schur-Ramanujan type identities for the M(p, p′) minimal models of conformal field theory,” Commun. Math. Phys. 191 (1998), 325-395.

    Google Scholar 

  14. A. Berkovich, B.M. McCoy, A. Schilling, and S.O. Warnaar, “Bailey flows and Bose-Fermi identities for the conformal coset models (A (1)1 )N×(A (1)1 )N′/(A (1)1 )N+N′”, Nucl. Phys. B 499 [PM] (1997), 621-649.

    Google Scholar 

  15. D.M. Bressoud, “A generalization of the Rogers-Ramanujan identities for all moduli,” J. Combin. Theory Ser. A 27 (1979), 64-68.

    Google Scholar 

  16. D.M. Bressoud, “An analytic generalization of the Rogers-Ramanujan identities with interpretation,” Quart. J. Maths. (Oxford) 31(2) (1980), 385-399.

    Google Scholar 

  17. D.M. Bressoud, “Analytic and combinatorial generalizations of the Rogers-Ramanujan identities,” Memoirs Amer. Math. Soc. 24 (1980), 1-54.

    Google Scholar 

  18. D.M. Bressoud, “The Bailey lattice: An introduction,” in Ramanujan Revisited (G.E. Andrews et al., eds.), Academic Press, New York, 1988, pp. 57-67.

    Google Scholar 

  19. S. Dasmahapatra, R. Kedem, T.R. Klassen, B.M. McCoy, and E. Melzer, “Quasi-particles, conformal field theory, and q-series,” Int. J. Mod. Phys. B 7 (1993), 3617-3648.

    Google Scholar 

  20. O. Foda, M. Okado, and S.O. Warnaar, “A proof of polynomial identities of type \(s\widehat{l\left( n \right)}_1 \otimes {{s\widehat{l\left( n \right)}_1 } \mathord{\left/ {\vphantom {{s\widehat{l\left( n \right)}_1 } {s\widehat{l\left( n \right)}_2 }}} \right. \kern-\nulldelimiterspace} {s\widehat{l\left( n \right)}_2 }}\),” J. Math. Phys. 37 (1996), 965-986.

    Google Scholar 

  21. O. Foda and Y.-H. Quano, “Virasoro character identities from the Andrews-Bailey construction,” Int. J. Mod. Phys. A 12 (1997), 1651-1676.

    Google Scholar 

  22. G. Gaspar and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990, Appendix I.

  23. H. Göllnitz, “Partitionen mit Differenzenbedingungen,” J. Reine Angew. Math. 225 (1967), 154-190.

    Google Scholar 

  24. B. Gordon, “A combinatorial generalization of the Rogers-Ramanujan identities,” Amer. J. Math. 83 (1961), 393-399.

    Google Scholar 

  25. B. Gordon, “Some continued fractions of the Rogers-Ramanujan type,” Duke Math. 31 (1965), 741-748.

    Google Scholar 

  26. M. Jimbo and T. Miwa, “Irreducible decomposition of fundamental modules for A (1) and C (1) , and Hecke modular forms,” Adv. Stud. in Pure Math. 4 (1984), 97-119.

    Google Scholar 

  27. M. Jimbo, T. Miwa, and M. Okado, “Local state probabilities of solvable lattice models: An A (1) n-1 family,” Nucl. Phys. B 300 [FS22] (1988), 74-108.

    Google Scholar 

  28. V.G. Kac and D.H. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms,” Adv. in Math. 53 (1984), 125-264.

    Google Scholar 

  29. J. Lepowsky and M. Primc, “Structure of the standard modules for the affine Lie algebra A (1)1 ,” Contemp. Math. 46, AMS, Providence, 1985.

    Google Scholar 

  30. G.M. Lilly and S.C. Milne, “The C Bailey transform and Bailey lemma,” Constr. Approx. 9 (1993), 473-500.

    Google Scholar 

  31. P.A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge University Press, London and New York, 1916.

    Google Scholar 

  32. S.C. Milne and G.M. Lilly, “The A and C Bailey transform and lemma,” Bull. Amer. Math. Soc. (N.S.) 26 (1992), 258-263.

    Google Scholar 

  33. S.C. Milne and G.M. Lilly, “Consequences of the A and C Bailey transform and Bailey lemma,” Discrete Math. 139 (1995), 319-346.

    Google Scholar 

  34. L.J. Rogers, “Second memoir on the expansion of certain infinite products,” Proc. London Math. Soc. 25 (1894), 318-343.

    Google Scholar 

  35. L.J. Rogers and S. Ramanujan, “Proof of certain identities in combinatory analysis,” Proc. Cambridge Phil. Soc. 19 (1919), 211-216.

    Google Scholar 

  36. A. Schilling and S.O. Warnaar, “A higher level Bailey lemma,” Int. J. Mod. Phys. B 11 (1997), 189-195.

    Google Scholar 

  37. L.J. Slater, “A new proof of Rogers's transformations of infinite series,” Proc. London Math. Soc. 53(2) (1951), 460-475.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, A., Ole Warnaar, S. A Higher Level Bailey Lemma: Proof and Application. The Ramanujan Journal 2, 327–349 (1998). https://doi.org/10.1023/A:1009746932284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009746932284

Navigation