Data Mining and Knowledge Discovery

, Volume 2, Issue 4, pp 311–324 | Cite as

A Microeconomic View of Data Mining

  • Jon Kleinberg
  • Christos Papadimitriou
  • Prabhakar Raghavan
Article

Abstract

We present a rigorous framework, based on optimization, for evaluating data mining operations such as associations and clustering, in terms of their utility in decision-making. This framework leads quickly to some interesting computational problems related to sensitivity analysis, segmentation and the theory of games.

market segmentation optimization clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items in a large database. Proc. ACM SIGMOD Intl. Conference on Management of Data, pp. 207-216.Google Scholar
  2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.I. 1996. Fast discovery of association rules. Advances in knowledge discovery and data mining, pp. 307-328, AAAI/MIT Press.Google Scholar
  3. Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. Proc. 20th Intl. Conference on Very Large Databases, pp. 487-499.Google Scholar
  4. Aumann, R. and Hart, S. (Eds.) 1992. Handbook of Game Theory, volume I, Elsevier.Google Scholar
  5. Avriel, M. 1976. Nonlinear Programming: Analysis and Methods. Prentice-Hall.Google Scholar
  6. Brin, S., Motwani, R., and Silverstein, C. 1997a. Beyond market baskets: generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conference on Management of Data.Google Scholar
  7. Brin, S., Motwani, R., Ullman, J.D., and Tsur, S. 1997b. Dynamic itemset counting and implication rules for market basket data. Proc. ACM SIGMOD Intl. Conference on Management of Data.Google Scholar
  8. Berry, M.J. and Linoff, G. 1997. Data Mining Techniques. John-Wiley.Google Scholar
  9. Chen, M.S., Han, J., and Yu, P.S. 1996. Data mining: An overview from a database perspective. IEEE Trans. on Knowledge and Data Eng., 8(6): 866-884.CrossRefGoogle Scholar
  10. Dantzig, G.B. 1963. Linear programming and Extensions. Princeton Univ. Press.Google Scholar
  11. Derman, C. 1970. Finite State Markov Decision Processes. New York: Academic Press.Google Scholar
  12. Gunopoulos, D., Khardon, R., Mannila, H., and Toivonen, H. 1997. Data mining, hypergraph transversals, and machine learning. Proc. ACM SIGACT-SIGMOD Symposium on Principles of Databases Systems, pp. 209-217.Google Scholar
  13. Kleinberg, J., Papadimitriou, C.H., and Raghavan, P. 1998. Segmentation problem. Proc. ACM Symposium on Theory of Computing.Google Scholar
  14. Liu, B. and Hsu, W. 1996. Post-analysis of learned rules. Proc. National Conference on Artificial Intelligence, pp. 828-834.Google Scholar
  15. Masand, B.M. and Piatetsky-Shapiro, G. 1996. A comparison of approaches for maximizing business payoff of prediction models. Proc. Intl. Conference on Knowledge Discovery and Data Mining.Google Scholar
  16. Papadimitriou, C.H. and Steiglitz, K. 1997. Combinatorial Optimization: Algorithms and Complexity, 2nd edition. Dover.Google Scholar
  17. Piatetsky-Shapiro, G. and Matheus, C.J. 1994. The interestingness of deviations. Proc. Intl. Conference on Knowledge Discovery and Data Mining, pp. 25-36.Google Scholar
  18. Silberschatz, A. and Tuzhilin, A. 1996. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Eng., 8(6).Google Scholar
  19. Smyth, P. and Goodman, R.M. 1991. Rule induction using information theory. Proc. Intl. Conference on Knowledge Discovery and Data Mining, pp. 159-176.Google Scholar
  20. Srikant, R. and Agrawal, R. 1995. Mining generalized association rules. Proc. Intl. Conference on Very Large Databases.Google Scholar
  21. Toivonen, H. 1996. Sampling large databases for finding association rules. Proc. Intl. Conference on Very Large Databases.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Jon Kleinberg
    • 1
  • Christos Papadimitriou
    • 2
  • Prabhakar Raghavan
    • 3
  1. 1.Department of Computer ScienceCornell UniversityIthaca
  2. 2.Computer Science DivisionSoda HallUC Berkeley
  3. 3.IBM Almaden Research CenterSan Jose

Personalised recommendations