Skip to main content
Log in

Detection of Viability of Dysfunctional Myocardium in Coronary Heart Disease. II. Echocardiography

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The detection of viable myocardium in patients with severe left ventricular (LV) dysfunction is important because these patients benefit most from revascularization. Three echocardiographic techniques can be used for the noninvasive assessment of functional correlates of viable myocardium. Two-dimensional echocardiography (2DE) is well suited for quantifying resting LV regional and global systolic function and dysfunction before and after revascularization, in addition to providing data on chamber size, shape, and wall thicknesses. The presence of hypokinesis on a resting 2DE indicates that viable myocardium is definitely present, but presence of dykinesis does not exclude viability. Dobutamine stress echocardiography (DSE) before revascularization unmasks viability by demonstrating augmentation of systolic function. Several clinical studies have shown that improvement of regional function during DSE indicates contractile reserve and predicts improvement of function after revascularization. A biphasic response on DSE appears to predict residual coronary artery stenosis and is a reliable marker of viability. DSE also appears to be useful after revascularization for unmasking contractile reserve. Myocardial contrast echocardiography (MCE) detects viability by defining microvascular perfusion, the extent of myocardium at risk, and coronary flow reserve. The clinical utility of MCE is undergoing evaluation. The combination of DSE and MCE might provide an improved estimate of the extent of viable myocardium based on assessment of function and perfusion. Meanwhile, echocardiographic and nuclear techniques can be used to complement each other in the assessment of myocardial viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gould KL. Myocardial viability. What does it mean and how do we measure it? Circulation 1991;83:333–335.

    Google Scholar 

  2. Rahimtoola SH: From coronary artery disease to heart failure. Role of the hibernating myocardium. Am J Cardiol 1995;75:16E–22E.

    Google Scholar 

  3. Bonow RO. The hibernating myocardium: implications for management of congestive heart failure. AmJ Cardiol 1995; 75:17A–25A.

    Google Scholar 

  4. Kaul SK. There may be more to myocardial viability than meets the eye! Circulation 1995;92:2790–2793.

    Google Scholar 

  5. Armstrong WF. “Hibernating” myocardium: Asleep or part dead? J Am Coll Cardiol 1996;28:530–535.

    Google Scholar 

  6. Kaul S. Response of dysfunctional myocardium to dobutamine. “The eyes see what the mind knows!” J Am Coll Cardiol 1996;27:1608–1611.

    Google Scholar 

  7. Bonow RO. Identification of viable myocardium. Circulation 1996;94:267A–2680.

    Google Scholar 

  8. McGhie AI, Weyman A. Searching for hibernating myocardium. Time to reevaluate investigative strategies? Circulation 1996;94:2685–2688.

    Google Scholar 

  9. Iskandrian AS. Myocardial viability: unresolved issues. J Nucl Med 1991;37:794–797.

    Google Scholar 

  10. Schelbert HR, Bonow RO, Botvinick EH, Dilsizian V, Tamaki N, Udelson JE: Is the issue of viability “viable?” Wintergreen panel summaries. J Nucl Cardiol 1997;4:83–98.

    Google Scholar 

  11. Lee KS, Marwick TH, Cook SA, Go RT, Fix JS, James KB, Sapp SK, MacIntyre WJ, Thomas JD. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994;90: 2687–2694.

    Google Scholar 

  12. vom Dahl J, Altehoefer C, Sheehan FH, Buechin P, Uebis R, Messmer BJ, Buell U, Hanrath P. Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 1996;28:948–958.

    Google Scholar 

  13. Myers WO, Davis K, Foster ED, Maynard C, Kaiser GC. Surgical survival in the Coronary Artery Surgery Study (CASS) registry. Ann Thorac Surg 1985;40:245–260.

    Google Scholar 

  14. Holmes DR, Davis KB, Mock MB, Fisher LD, Gersh BJ, Killip T, Pettinger M, and participants of CASS. The effect of medical and surgical treatment on subsequent sudden cardiac death in patients with coronary artery disease: a report from the Coronary Artery Surgery Study (CASS). Circulation 1986;73:1254–1263.

    Google Scholar 

  15. Elefteriades JA, Tolis G Jr, Levi E, Mills LK, Zaret BL. Coronary artery bypass grafting in severe left ventricular dys-function: excellent survival with improved ejection fraction and functional state. J AmColl Cardiol 1993;22:1411–1417.

    Google Scholar 

  16. Manyari DE, Humen DP, Jugdutt BI. Detection of viability of dysfunctional myocardium in coronary heart disease. I. Radionuclide imaging. Heart Failure Rev 1998;2:135–156.

    Google Scholar 

  17. Schelbert HR, Buxton D. Insights into coronary artery disease gained from metabolic imaging. Circulation 1988;78: 496–505.

    Google Scholar 

  18. Schelbert HR. Merits and limitations of radionuclide approaches to viability and future developments. J Nucl Cardiol 1994;1:S86–S96.

    Google Scholar 

  19. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989;117:211–221.

    Google Scholar 

  20. Braunwald E, Kloner RA. The stunned myocardium: prolonged postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.

    Google Scholar 

  21. Rahimtoola SH. Coronary bypass surgery for chronic angina—1981. A perspective. Circulation 1982;65:225–241.

    Google Scholar 

  22. Chatterjee K, Swan HJC, Parmley W, Sustaite H, Marcus H, Matloff J. Influence of direct myocardial revascularization on left ventricular asynergy and function in patients with coronary heart disease. Circulation 1973;47:276–286.

    Google Scholar 

  23. Brundage BH, Massie BM, Botvinick EH. Improved regional ventricular function after successful surgical revascularization. J Am Coll Cardiol 1984;3:902–908.

    Google Scholar 

  24. Jugdutt BI, Lee SJK, Taylor RF. Abolition of ischemic response to atrial pacing following aorto-coronary bypass surgery. Circulation 1976;54:225–229.

    Google Scholar 

  25. Diamond G, Forrester J, deLuz P, Wyatt H, Swan HJ. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J 1978;95:204–209.

    Google Scholar 

  26. Bashour TT, Mason DT. Myocardial hibernation and “embalment.” Am Heart J 1990;119:706–708.

    Google Scholar 

  27. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the “hibernating” myocardium. J Am Coll Cardiol 1986;8:1467–1470.

    Google Scholar 

  28. Celermajer DS, Sholler GF, Howman-Giles R, Celermajor JM. Myocardial infarction in childhood: clinical analysis of 17 cases and medium term follow up of survivors. Br Heart J 1991;65:332–336.

    Google Scholar 

  29. Shivalkar B, Borgers M, Daenen W, Gewillig M, Flameng W. ALCAPA syndrome: an example of chronic myocardial hypoperfusion? J Am Coll Cardiol 1994;23:772–778.

    Google Scholar 

  30. Brezinski DA, Harrison JK, Hanson MW, Wilson JS, Van Trigt P, Bashore TM. Ischemic hibernating myocardium demonstrated by positron emission tomography in anoma-lous origin of the left coronary artery from the pulmonary artery. Am Heart J 1994;128:181–185.

    Google Scholar 

  31. Wilson C, Dlabal P, Holeyfield R, Akins CW, Knauf DG. Anomalous origin of the left coronary artery from the pul-monary artery. Case report and review of the literature concerning teenagers and adults. J Thorac Cardiovasc Surg 1997;73:887–893.

    Google Scholar 

  32. Ross J Jr. Myocardial perfusion-contraction matching. Im-plications for coronary heart disease and hibernation. Circu-lation 1991;83:1076–1083.

    Google Scholar 

  33. Bolli R. Mechanism of myocardial “stunning.” Circulation 1990;82:723–738.

    Google Scholar 

  34. Becker LC, Ambrosio G. Myocardial consequences of reper-fusion. Prog Cardiovasc Dis 1987;30:23–44.

    Google Scholar 

  35. Bolli R. Myocardial stunning in man. Circulation 1992;86: 1671–1691.

    Google Scholar 

  36. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelk-ern M, Phelps M, Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–888.

    Google Scholar 

  37. Nienaber CA, Brunken RC, Sherman CT, Yeatman LA, Gambhir SS, Krivokapich J, Demer LL, Ratib O, Child JS, Phelps ME, Schelbert HR. Metabolic and functional recov-ery of ischemic human myocardium after coronary angio-plasty. J Am Coll Cardiol 1991;18:966–978.

    Google Scholar 

  38. Reduto LA, Smalling RW, Freund GC, Gould KL. Intra-coronary infusion of streptokinase in patients with acute myocardial infarction: effects of reperfusion on left ventricu-lar performance. Am J Cardiol 1981;48:403–409.

    Google Scholar 

  39. Anderson JL, Marshall HW, Bray BE, Lutz JR, Frederick PR, Yanowitz FG, Datz FL, Klausner SC, Hagan AD. A randomized trial of intracoronary streptokinase in the treat-ment of acute myocardial infarction. N Engl J Med 1983; 308:1313–1318.

    Google Scholar 

  40. Stack RS, Phillips HR III, Grierson DS, Behar VS, Kong Y, Peter RH, Swain JL, Greenfield JC. Functional improve-ment of jeopardized myocardium following intracoronary streptokinase infusion in acute myocardial infarction. J Clin Invest 1983;72:84–95.

    Google Scholar 

  41. Bateman TM, Czer LSC, Gray RJ, Maddahi J, Raymond MJ, Geft IL, Ganz W, Shah PK, Berman DS. Transient pathologic Q waves during acute ischemic events: an electrocardiog-raphic correlate of stunned but viable myocardium. Am Heart J 1983;6:1421–1426.

    Google Scholar 

  42. Schroeder R, Biamino G, von Leitner E-R, Linderer T, Bruggeman T, Heitz J, Vohringer H-F, Wegscheider K. In-travenous short-term infusion of streptokinase in acute myocardial infarction. Circulation 1983;67:536–548.

    Google Scholar 

  43. Anderson JL, Marshall HW, Askins JC, Yanowitz FG, Lutz JR, Sorensen SG, Menlove RL, Hagan AD. A randomized trial of intravenous and intracoronary streptokinase in pa-tients with acute myocardial infarction. Circulation 1984;70: 606–618.

    Google Scholar 

  44. Charuzi Y, Beeder C, Marshall LA, Sasaki H, Pack NB, Geft I, Ganz W. Improvement in regional and global left ventricu-lar function after intracoronary thrombolysis: assessment with two-dimensional echocardiography. Am J Cardiol 1984;53:662–665.

    Google Scholar 

  45. Topol EJ, Weiss JL, Brinker JA, Brin KP, Gottlieb SO, Becker LC, Bulkley BH, Chandra N, Flaherty JT, Gersten-blith G, Gottlieb SH, Guerci AD, Ouyang P, Llewellyn MP, Weisfeldt ML, Shapiro EP. Regional wall motion improve-ment after coronary thrombolysis with recombinant tissue plasminogen activator: importance of coronary angioplasty. J Am Coll Cardiol 1985;6:426–433.

    Google Scholar 

  46. Serruys PW, Simoons ML, Suryapranata H, Vermeer F, Wijns W, van den Brand M, Bar F, Zwaan C, Krauss H, Remme WJ, Res J, Verheugt FWA, van Domberg R, Lubsen J, Hugenholtz PG. Preservation of global and regional left ventricular function after early thrombolysis in acute myo-cardial infarction. J Am Coll Cardiol 1986;7:729–742.

    Google Scholar 

  47. Erbel R, Pop T, Henrichs K, Olshausen K, Schuster CJ, Rupprecht H, Steuernagel C, Meyer J. Percutaneous trans-luminal coronary angioplasty after thrombolytic therapy: a prospective controlled randomized trial. J Am Coll Cardiol 1986;8:485–495.

    Google Scholar 

  48. Schmidt WG, Sheehan FH, von Essen R, Vebis R, Effert S. Evolution of left ventricular function after intracoronary thrombolysis for acute myocardial infarction. Am J Cardiol 1989;63:497–502.

    Google Scholar 

  49. Bourdillon PDV, Broderick TM, Williams ES, Davis C, Dil-lon JC, Armstrong WF, Fineberg N, Ryan T, Feigenbaum H. Early recovery of regional left ventricular function after reperfusion in acute myocardial infarction assessed by serial two-dimensional echocardiography. Am J Cardiol 1989;63: 641–646.

    Google Scholar 

  50. Touchstone DA, Beller GA, Nygaard TW, Tedesco C, Kaul S. Effects of successful intravenous reperfusion therapy on regional myocardial function and geometry in humans: a tomographic assessment using two-dimensional echocardio-graphy. J Am Coll Cardiol 1989;13:1506–1513.

    Google Scholar 

  51. Pfisterer M, Zuber M, Wenzel R, Burkart F. Prolonged myo-cardial stunning after thrombolysis: can left ventricular function be assessed definitely at hospital discharge? Eur Heart J 1991;12:214–217.

    Google Scholar 

  52. Jugdutt BI, Schwarz-Michorowski BL, Tymchak WJ, Burton JR. Prompt improvement of left ventricular function and topography with combined reperfusion and intravenous ni-troglycerin in acute myocardial infarction. Cardiology 1997; 88:170–179.

    Google Scholar 

  53. Kim CB, Braunwald E. Potential benefits of late reperfusion of infarcted myocardium. The open artery hypothesis. Cir-culation 1993;88:2426–2436.

    Google Scholar 

  54. Flameng W, Vanhaecke J, Van Belle H, Borgers M, De Beer L, Minten J. Relation between coronary artery stenosis and myocardial purine metabolism, histology and regional func-tion in humans. J Am Coll Cardiol 1987;9:1235–1242.

    Google Scholar 

  55. Flameng W, Suy R, Schwarz F, Borgers M, Piessens J, Thone F, Van Ermen H, De Geest H. Ultrastructural corre-lates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: determinants of revers-ible segmental asynergy post revascularization surgery. Am Heart J 1981;102:846–857.

    Google Scholar 

  56. Flameng W, Wouters L, Sergeant P, Lewi P, Borgers M, Thone F, Suy R. Multivariate analysis of angiographic, his-tologic, and electrocardiographic data in patients with Coronary heart disease. Circulation 1984;70:7–17.

    Google Scholar 

  57. Borgers M, Thone F, Wouters, Ausma J, Shivalkar B, Fla-meng W. Structural correlates of regional myocardial dys-function in patients with critical coronary stenosis: chronic hibernation? Cardiovasc Pathol 1993;2:237–245.

    Google Scholar 

  58. Borgers M, Ausma J. Structural aspects of the chronic hi-bernating myocardium in man. Basic Res Cardiol 1995;90: 44–46.

    Google Scholar 

  59. Ausma J, Furst D, Thone F, Shivalkar B, Flameng W, Weber K, Ramaekers F, Borgers M. Molecular changes of titin in left ventricular dysfunction as a result of chronic hiberna-tion. J Mol Cell Cardiol 1995;27:1203–1212.

    Google Scholar 

  60. Schwarz ER, Schaper J, vom Dahl J, Altehoefer C, Grohmann B, Schoendube F, Sheehan FH, Uebis R, Buell U, Messmer BJ, Schaper W, Hanrath P. Myocyte degeneration and cell death in hibernating myocardium. J Am Coll Cardiol 1996;27:1577–1585.

    Google Scholar 

  61. Shivalkar B, Maes A, Borgers M, Ausma J, Scheys I, Nuyts J, Mortelmans L, Flameng W. Only hibernating myocardium invariably shows early recovery after coronary revasculari-zation. Circulation 1996;94:308–315.

    Google Scholar 

  62. Elsässer A, Schaper J. Hibernating myocardium: Adaptation or degeneration? Basic Res Cardiol 1995;90:47–48.

    Google Scholar 

  63. Kaprielian RR, Dupont E, Gunning M, Underwood R, Pen-nell M, Fox K, Pepper J, Poole-Wilson PA, Severs NJ. Down-regulation of connexin43 and decreased gap junction size may contribute to electromechanical dysfunction in hi-bernating ventricular myocardium. (Abstract). Eur Heart J 1996;17:397.

    Google Scholar 

  64. Elsässer A, Mueller KD, Strasser R, Vogt AM, Rau M, Klövekorn WP, Schaper J. “Hibernating myocardium:” de-generation caused by apoptosis. (Abstract). Circulation 1995;92(Suppl I):0891.

    Google Scholar 

  65. Flameng W, Shivalkar B. Hibernating myocardium, a clini-cal entity. Basic Res Cardiol 1995;90:55–57.

    Google Scholar 

  66. Topol EJ, Weiss JL, Guzman PA, Dorsey-Lima S, Blanck TJJ, Humphrey LS, Baumgartner WA, Flaherty JT, Reitz BA. Immediate improvement of dysfunctional myocardial segments after coronary revascularization: detection by in-teroperative transesophageal echocardiography. J Am Coll Cardiol 1984;4:1123–1134.

    Google Scholar 

  67. Tymchak WJ, Michorowski BL, Burton JR, Jugdutt BI. Preservation of left ventricular function and topography with combined reperfusion and intravenous nitroglycerin in acute myocardial infarction. J Am Coll Cardiol 1988; 11:90A.

    Google Scholar 

  68. Myers JH, Stirling MC, Choy M, Buda AJ, Gallagher KP. Direct measurement of inner and outer wall thickening dy-namics with epicardial echocardiography. Circulation 1986; 74:164–172.

    Google Scholar 

  69. Ambrosio G, Betocchi S, Pace L, Losi MA, Perrone-Filardi P, Soricelli A, Piscione F, Taube J, Squame F, Salvatore M, Weiss JL, Chiariello M. Prolonged impairment of regional contractile function after resolution of exercise-induced angina: evidence of myocardial stunning in patients with Coronary artery disease. Circulation 1996;94:2455–2464.

    Google Scholar 

  70. Kambayashi M, Miura T, Oh BH, Murata K, Rockman HA, Parra G, Ross J Jr. Myocardial cell hypertrophy after myo-cardial infarction with reperfusion in dogs. Circulation 1992; 86:1935–1944.

    Google Scholar 

  71. Jugdutt BI. Effect of reperfusion on ventricular mass, to-pography and function during healing of anterior infarction. Am J Physiol 1997;272:H1205–H1211.

    Google Scholar 

  72. Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC. Three-dimensional mapping of the infarct, collateral flow and re-gion at risk. Circulation 1979;60:1141–1150.

    Google Scholar 

  73. Lee JT, Ideker RE, Reimer KA. Myocardial infarct size and location with respect to the coronary vascular bed in man. Circulation 1981;64:526–534.

    Google Scholar 

  74. Jugdutt BI, Tang S-B, Khan MI, Basualdo CA. Functional impact or remodeling during healing after non-Q wave ver-sus Q wave anterior myocardial infarction in the dog. J Am Coll Cardiol 1992;20:722–731.

    Google Scholar 

  75. Jugdutt BI, Khan MI. Impact of increased infarct transmu-rality on remodeling and function during healing after ante-rior myocardial infarction in the dog. Can J Physiol Phar-macol 1992;70:949–958.

    Google Scholar 

  76. Tennant R, Wiggers CJ. The effect of coronary occlusion on myocardial infarction. Am J Physiol 1935;112:351–361.

    Google Scholar 

  77. Lieberman AN, Weiss JL, Jugdutt BI, Becker LC, Bulkley BH, Garrison JG, Hutchins GM, Kallman CA, Weisfeldt ML. Two-dimensional echocardiography and infarct size: rela-tionship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 1981;63: 739–746.

    Google Scholar 

  78. Weintraub WS, Hattori S, Agarwal JB, Bodenheimer MM, Banka VS, Helfant RH. The relationship between myocar-dial blood flow and contraction by myocardial layer in the canine left ventricle during ischemia. Circ Res 1981; 48:430–438.

    Google Scholar 

  79. Jugdutt BI. Infarct transmurality, Q waves and ventricular remodeling (letter). J Am Coll Cardiol 1993;21:848–849.

    Google Scholar 

  80. Jugdutt BI. Identification of patients prone to infarct expan-sion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarc-tion. A prospective study. Clin Cardiol 1990;13:28–40.

    Google Scholar 

  81. Jugdutt BI, Basualdo CA. Myocardial infarct expansion dur-ing indomethacin or ibuprofen therapy for symptomatic post-infarction pericarditis. Influence of other pharma-cologic agents during early remodeling. Can J Cardiol 1989; 5:211–221.

    Google Scholar 

  82. Pandian NG, Kerber RE. Two-dimensional echocardiogra-phy in experimental coronary stenosis. I. Sensitivity and specificity in detecting transient myocardial dyskinesis: a comparison with sonomicrometers. Circulation 1982;66: 597–602.

    Google Scholar 

  83. Pandian NG, Kieso RA, Kerber RE. Two-dimensional echo-cardiography in experimental coronary stenosis. II. Rela-tionship between systolic wall thinning and regional myo-cardial perfusion in severe coronary stenosis. Circulation 1982;66:603–611.

    Google Scholar 

  84. Homans DC, Pavek T, Laxson DD, Bache RJ. Recovery of transmural and subepicardial wall thickening after subendo-cardial infarction. J Am Coll Cardiol 1994;24:1109–1116.

    Google Scholar 

  85. Heger JT, Weyman AE, Wann LS, Dillon JC, Feigenbaum H. Cross-sectional echocardiography in acute myocardial in-farction: detection and localization of regional left ventricu-lar asynergy. Circulation 1979;60:531–538.

    Google Scholar 

  86. Nixon JV, Narahara KA, Smitherman TC. Estimation of myocardial involvement in patients with acute myocardial infarction by two-dimensional echocardiography. Circulation 1980;62:1248–1255.

    Google Scholar 

  87. Parisi AF, Moynihan P, Folland ED, Feldman CL. Quantita-tive detection of regional left ventricular contraction abnor-malities by two-dimensional echocardiography: II. Accuracy in coronary artery disease. Circulation 1981;63:761–767.

    Google Scholar 

  88. Visser CA, Lie KI, Kan G, Meltzer R, Durrer D. Detection and quantification of acute, isolated myocardial infarction by two-dimensional echocardiography. Am J Cardiol 1981;47: 1020–1025.

    Google Scholar 

  89. Meltzer RS, Woythaler JN, Buda AJ, Griffin JC, Harrison WD, Martin RP, Harrison DC, Popp RL. Two-dimensional echocardiographic quantitation of infarct size alteration by pharmacologic agents. Am J Cardiol 1979;44:257–262.

    Google Scholar 

  90. Jugdutt BI, Sussex BA, Haraphongse M, Rossall RE. Right ventricular involvement in transmural inferior wall in-farction: two-dimensional echocardiographic and clinical cor-relations. Clin Invest Med 1983;6:261–273.

    Google Scholar 

  91. Jugdutt BI, Sussex BA, Warnica JW, Rossall RE. Persistent reduction in left ventricular asynergy in patients with acute myocardial infarction with infusion of nitroglycerin. Circu-lation 1983;68:1264–1273.

    Google Scholar 

  92. Jugdutt BI, Sussex BA, Sivaram CA, Rossall RE. Right ventricular infarction: a two-dimensional echocardiographic evaluation. Am Heart J 1984;107:505–518.

    Google Scholar 

  93. Jugdutt BI, Haraphongse M, Basualdo CA, Rossall RE. Evaluation of biventricular involvement in hypotensive pa-tients with transmural inferior infarction by two-dimen-sional echocardiography. Am Heart J 1984;108:1417–1426.

    Google Scholar 

  94. Weiss JL, Bulkley BH, Hutchins GM, Mason SJ. Two-dimen-sional echocardiographic recognition of myocardial injury in man: comparison with postmortem studies. Circulation 1981;63:401–408.

    Google Scholar 

  95. Schiller NB. Two-dimensional echocardiographic determina-tion of left ventricular volume, systolic function, and mass. Summary and Discussion of the 1989 recommendations of the American Society of Echocardiography. Circulation 1991;84(Suppl I):I-280-I-287.

    Google Scholar 

  96. Cheitlin MD, Alpert JS, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davidson TW, Davis JL, Douglas PS, Gillam LD, Lewis RP, Pearlman AS, Philbrick JT, Shah PM, Williams RG. ACC/AHA guidelines for the clinical ap-plication of echocardiography: a report of the American Col-lege of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Circulation 1997;95:1686–1744.

    Google Scholar 

  97. Kisslo JA, Robertson D, Gilbert BV, von Ramm O, Behar VS. A comparison of real-time, two-dimensional echocar-diography and cineangiography in detecting left ventricular asynergy. Circulation 1977;55:134–141.

    Google Scholar 

  98. Jugdutt BI, Cahn RL, Basualdo CA, Rossall RE. Measure-ment of left ventricular shape distortion. In Computers in Cardiology, IEEE Computer Society Press: Los Angeles, 1984:pp: 47–52.

    Google Scholar 

  99. Jugdutt BI, Michorowski BL. Role of infarction expansion in rupture of the ventricular septum after acute myocardial infarction. A Two-Dimensional Echocardiographic study. Clin Cardiol 1987;10:641–652.

    Google Scholar 

  100. Maidens JM, Blinston GE, Jugdutt BI. Computer-assisted measurement of regional and global left ventricular shape distortion after myocardial infarction. In Computers in Cardiology, IEEE Computer Society Press: Los Angeles, Cali-fornia, 1987: 413–416.

    Google Scholar 

  101. Jugdutt BI, Michorowski BL, Kappagoda TC. Exercise training after anterior Q wave myocardial infarction: impor-tance of regional left ventricular function and topography. J Am Coll Cardiol 1988;12: 362–372.

    Google Scholar 

  102. Gould KL, Lipscomb K, Hamilton GW, Kennedy SW. Rela-tion of left ventricular shape, function and wall stress in man. Am J Cardiol 1974:34:627–634.

    Google Scholar 

  103. Eaton LW, Weiss JL, Bulkley BH, Garrison JB, Weisfeldt ML. Regional cardiac dilatation after acute myocardial in-farction. N Eng J Med 1979;300:57–62.

    Google Scholar 

  104. Erlebacher JA, Weiss JL, Eaton LW, Kallman C, Weisfeldt ML, Bulkley BH. Late effects of acute infarct dilation on heart size: a two-dimensional echocardiographic study. Am J Cardiol 1982;49:1120–1126.

    Google Scholar 

  105. Erlebacher JA, Weiss JL, Weisfeldt ML, Bulkley BH. Early dilation of the infarcted segment in acute transmural myo-cardial infarction: role of infarct expansion in acute left ventricular enlargement. J Am Coll Cardiol 1984;4:201–208.

    Google Scholar 

  106. Jugdutt BI, Warnica JW. Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion and complications: effect of timing, dosage and infarct location. Circulation 1988;78:906–919.

    Google Scholar 

  107. Jugdutt BI, Sivaram CA. Prospective two-dimensional echocardiographic evaluation of left ventricular thrombus and embolism after mycocardial infarction. J Am Coll Cardiol 1989;13:554–564.

    Google Scholar 

  108. Jugdutt BI, Michorowski BL, Tymchak WJ. Improved left ventricular function and topography by prolonged nitroglyc-erin therapy after acute myocardial infarction. Z Kardiol 1989;78(Suppl 2):127–129.

    Google Scholar 

  109. Johnston BJ, Blinston GE, Jugdutt BI. Overestimation of myocardial infarct size on two-dimensional echocardiograms due to remodeling of the infarct zone. Can J Cardiol 1994; 10:77–86.

    Google Scholar 

  110. Jugdutt BI. Effect of nitroglycerin and ibuprofen on left ventricular topography and rupture threshold during heal-ing after myocardial infarction in the dog. Can J Physiol Pharmacol 1988;66:385–395.

    Google Scholar 

  111. Picard MH, Wilkins GT, Ray PA, Weyman AE. Progressive changes in ventricular structure and function during the year after acute myocardial infarction. Am Heart J 1992; 124:24–31.

    Google Scholar 

  112. Picard MH, Wilkins GT, Gillam LD, Thomas JD, Weyman AE. Immediate regional endocardial surface expansion fol-lowing coronary occlusion in the canine left ventricle: dispro-portionate effects of anterior versus inferior ischemia. Am Heart J 1991;121:753–762.

    Google Scholar 

  113. Jugdutt BI, Michorowski BL, Khan MI. Effect of long-term captopril therapy on left ventricular remodeling and func-tion during healing of canine myocardial infarction. J Am Coll Cardiol 1992.9:713–723.

    Google Scholar 

  114. Jugdutt BI, Humen DP, Khan MI, Schwarz-Michorowski BL. Effect of left ventricular unloading with captopril on remodeling and function during healing of anterior transmu-ral myocardial infarction in the dog. Can J Cardiol 1992; 8:151–163.

    Google Scholar 

  115. Jugdutt BI, Khan MI. Effect of prolonged nitrate therapy on left ventricular remodeling after canine acute myocardial infarction. Circulation 1994.;89:2297–2307.

    Google Scholar 

  116. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Cir-culation 1995;91:802–812.

    Google Scholar 

  117. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. Combined captopril and isosorbide dinitrate during healing after myo-cardial infarction. Effect on remodeling, function, mass and collagen. J Am Coll Cardiol. 1995;25:1089–1096.

    Google Scholar 

  118. Jugdutt BI. Effect of captopril and enalapril on left ventricu-lar geometry, function and collagen during healing after an-terior and inferior myocardial infarction in the dog. J Am Coll Cardiol. 1995;25:1718–1725.

    Google Scholar 

  119. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. Impact of left ventricular unloading after late reperfusion of canine ante-rior myocardial infarction on remodeling and function using isosorbide-5-mononitrate. Circulation. 1995;92:926–934.

    Google Scholar 

  120. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. Effect of prolonged inotropic stimulation on ventricular remodeling during healing after myocardial infarction in the dog: mecha-nistic insights. J Am Coll Cardiol 1996;27:1787–1795.

    Google Scholar 

  121. St. John Sutton M, Pfeffer MA, Plappert T, Rouleau J-L, Moyé LA, Dagenais GR, Lamas GA, Klein M, Sussex B, Goldman S, Menapace FJ Jr, Parker JO, Lewis S, Sestier F, Gordon DF, McEwen P, Bernstein V, Braunwald E, for the SAVE investigators. Quantitative two-dimensional echo-cardiographic measurements are major predictors of ad-verse cardiovascular effects of captopril. Circulation 1994; 89:68–75.

    Google Scholar 

  122. Pfeffer MA, Hennekens CH, HEART Study Executive Committee. When a question has an answer: rationale for our early termination of the HEART trial editorial Am J Cardiol. 1995;75:1173–1175.

    Google Scholar 

  123. Cheitlin MD, Alpert JS, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davidson TW, Davis JL, Douglas PA, Gillam LD, Lewis RP, Pearlman AS, Philbrick JT, Shah PS, Williams RG. ACC/AHA Guidelines for the clinical ap-plication of echocardiography: Executive summary. Areport of the American College of Cardiology/American Heart As-sociation task force on practice guidelines (Committee on Clinical Application of Echocardiography). J Am Coll Cardiol 1997;29:862–879.

    Google Scholar 

  124. Marcus RH, Bednarz J, Coulden R, Shraff S, Lipton M, Lang RM. Ultrasonic backscatter system for automated on-line endocardial boundary detection: evaluation by ultrafast computed tomography. J Am Coll Cardiol 1993;22:839–847.

    Google Scholar 

  125. Raisingham A, Donaghey L, Nozaki S, Dittrich H, DeMaria AM. New approaches to the evaluation of LV function: as-sessment of transmural gradients and diastolic relaxation rates by Doppler tissue imaging (abstract). Circulation 1994;90:I-327.

    Google Scholar 

  126. Kuecherer HF, Abbott JA, Botnivick EH, Scheinman ED, O'Connell JW, Scheinman MM, Foster E, Schiller NB. Two-dimensional echocardiographic phase analysis. Circulation 1992;85:130–142.

    Google Scholar 

  127. King DL, Harrison MR, King DL Jr, Gopal AS, Martin RP, DeMaria AN. Improved reproducibility of left atrial and left ventricular measurements by guided three-dimenstional echocardiography. J Am Coll Cardiol 1992;20:1238–1245.

    Google Scholar 

  128. Gopal AS, Keller AM, Rigling R, King DL Jr, King DL. Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimen-sional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol 1993;22: 258–270.

    Google Scholar 

  129. Sapin PM, Clarke GB, Gopal AS, Smith MD, King DL. Vali-dation of three-dimensional echocardiography for quantify-ing the extent of dyssynergy in canine acute myocardial infarction: comparison with two-dimensional echocardiogra-phy. J Am Coll Cardiol 1996;27:1761–1770.

    Google Scholar 

  130. Sapin PM, Schröder KM, Gopal AS, Smith MD, DeMaria AN, King DL. Comparison of two-and three-dimensional echocardiography with cineventriculography for measure-ment of left ventricular volume in patients. J Am Coll Cardiol 1994;24:1054–1063.

    Google Scholar 

  131. Gopal AS, Shen Z, Sapin PM, Keller AM, Schnellbaecher MJ, Leibowitz DW, Akinboboye OO, Rodney RA, Blood DK, King DL. Assessment of cardiac function by three-dimen-sional echocardiography compared with conventional nonin-vasive methods. Circulation 1995;95:842–853.

    Google Scholar 

  132. Perrone-Filardi P, Pace L, Prastaro M, Piscione F, Betocchi S, Squame F, Vezzuto P, Soricelli A, Indolphi C, Salvatore M, Chiariello M. Dobutamine echocardiography predicts im-provement of hypoperfused dysfunctional myocardium after revascularization in patients with coronary artery disease. Circulation 1995;91:2556–2565.

    Google Scholar 

  133. Perrone-Filardi P, Pace L, Prastaro M, Squame F, Betocchi S, Soricelli A, Piscione F, Indolfi C, Crisci T, Salvatore M, Chiariello M. Assessment of myocardial viability in patients with chronic coronary artery disease. Rest - 4-hour - 24-hour [201]TI tomography versus dobutamine echocardiog-raphy. Circulation 1996;94:2712–2719.

    Google Scholar 

  134. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission to-mography with [18F] fluorodeoxyglucose in patients with chronic coronary artery disease. Circulation 1995;91:1006–1015.

    Google Scholar 

  135. Lewis SJ, Sawada SG, Ryan T, Segar DS, Armstrong WF, Feigenbaum H. Segmental wall motion abnormalities in the absence of clinically documented myocardial infarction: clini-cal significance and evidence of hibernating myocardium. Am Heart J 1991;121:1088–1094.

    Google Scholar 

  136. Arnese M, Cornel JH, Salustri A, Maat APWM, Elhendy A, Reijs AEM, Cate FJT, Keane D, Balk AHMM, Roelandt JRTC, Fioretti PM. Prediction of improvement of regional left ventricular function after surgical revascularization. Circulation 1995;91:2748–2752.

    Google Scholar 

  137. Afridi I, Kleiman NS, Raizner AE, Zoghbi WA. Dobutamine echocardiography in myocardial hibernation. Circulation 1995;91:663–670.

    Google Scholar 

  138. Heger J, Weyman AE, Wann LS, Rogers EW, Dillon JC, Fiegenbaum H. Cross-sectional echocardiographic analysis of the extent of left ventricular asynergy in acute myocardial infarction. Circulation 1980;61:1113–1118.

    Google Scholar 

  139. Gibson RS, Bishop HL, Stamm RB, Crampton RS, Beller GA, Martin RP. Value of early two-dimensional echocardiog-raphy in patients with acute myocardial infarction. Am J Cardiol 1982;49:1110–1119.

    Google Scholar 

  140. Stamm RB, Gibson RS, Bishop HL, Carabello BA, Beller GA, Martin RP. Echocardiographic detection of infarct-local-ized asynergy and remote asynergy during acute myocardial infarction: correlation with the extent of angiographic Coronary disease. Circulation 1983;67:233–244.

    Google Scholar 

  141. Nishimura RA, Tajik AJ, Shub C, Miller FA, Ilstrup DM, Harrison CE. Role of two-dimensional echocardiography in the prediction of in hospital complications after acute myo-cardial infarction. J Am Coll Cardiol 1984;4:1080–1087.

    Google Scholar 

  142. Feigenbaum H. Coronary artery disease. In Fiegenbaum H (ed) Echocardiography, 5th ed. Lea & Febiger: Philadel-phia, 1994:447–510.

    Google Scholar 

  143. Nidorf SM, Weyman AE. Left ventricle. II. Quantitation of segmental dysfunction. In Weyman AE (ed), Principles and Practice of Echocardiography, 2 Edition. Lea & Febiger. Philadelphia. Chapter 21, 1994:265–655.

    Google Scholar 

  144. Wyatt HL, Meerbaum S, Heng MH, Rit J, Gueret P, Corday E. Experimental evaluation of the extent of myocardial dyssynergy and infarct size by two-dimensional echocar-diography. Circulation 1981;63:607–614.

    Google Scholar 

  145. Choong CY, Gibbons EF, Hogan RD, Franklin TD, Nolting M, Mann DL, Weyman AE. Relationship of func-tional recovery to scar contraction after myocardial in-farction in the canine left ventricle. Am Heart J 1989;117: 819–829.

    Google Scholar 

  146. Mann DL, Gillam LD, Weyman AE. Cross-sectional echo-cardiographic assessment of regional left ventricular per-formance and myocardial perfusion. Prog Cardiovasc Dis 1986;29:1–52.

    Google Scholar 

  147. Gillam LD, Franklin TD, Foale RA, Wiske PS, Guyer DE, Hogan RD, Weyman AE. The natural history of regional wall motion in the acutely infarcted canine ventricle. J Am Coll Cardiol 1986;7:1325–1334.

    Google Scholar 

  148. Gillam LD, Hogan RD, Foale RA, Franklin TD, Newell JB, Guyer DE, Weyman AE. A comparison of quantitative echo-cardiographic methods for delineating infarct-induced ab-normal wall motion. Circulation 1984;70:112–122.

    Google Scholar 

  149. Gibbons EF, Hogan RD, Franklin TD, Nolting M, Weyman AE. The natural history of regional dysfunction in a canine preparation of chronic infarction. Circulation 1985;71:394–402.

    Google Scholar 

  150. Ascah KJ, Gillam LD, Davidoff R, Franklin TD, Newell JB, Hogan RD, Weyman AE. Evolution of the temporal contrac-tion sequence after acute experimental myocardial in-farction. J Am Coll Cardiol 1989;13:730–736.

    Google Scholar 

  151. Garrison JB, Weiss JL, Manghan WL, Tuck OM, Guier WH, Fortuin NJ. Quantifying regional wall motion and thicken-ing in two-dimensional echocardiography with a computer-aided contouring system. In Ostrow H, Ripley K (ed.) Pro-ceedings of Computers in Cardiology. Institute of Electrical and Electronic Engineers: Long Beach, CA, California, 1977:25–35.

    Google Scholar 

  152. Geiser EA, Ariet M, Gonetta DA, Lupiewicz SM, Christie LG Jr, Conti CR. Dynamic three-dimensional reconstruction of the intact left ventricle: technique and initial observations in patients. Am Heart J 1982;103:1056–1065.

    Google Scholar 

  153. Geiser EA, Conetta DA, Limacher MC, Stockton VO, Oliver LH, Jones B. A second generation computer-based edge detection algorithm for short-axis two-dimensional echo-cardiographic images: accuracy and improvement in in-terobserver variability. J Am Soc Echocardiogr 1990;3: 79–90.

    Google Scholar 

  154. Vandenberg BF, Rath LS, Stuhlmuller P, Melton HE Jr, Skorton DJ. Estimation of left ventricular cavity area with an online, semiautomated echocardiographic edge detection system. Circulation 1992;86:159–166.

    Google Scholar 

  155. Wiske PS, Pearlman JD, Hogan RD, Franklin TD, Weyman AE. Echocardiographic definition of the left ventricular cen-troid: II. Determination of the optimal centroid during sys-tole in the normal and abnormal heart. J Am Coll Cardiol 1990;16:993–999.

    Google Scholar 

  156. Dodge HT, Sandler H, Ballew DW, Lord JD Jr. The use of biplane angiocardiography for the measurement of left ventricular volume in man. Am Heart J 1960;60:762–776.

    Google Scholar 

  157. Sheehan FH, Bolson EL, Dodge HT, Mathey DG, Schofer J, Woo H-W. Advantages and applications of the centerline method for characterizing regional ventricular function. Cir-culation 1986;74:293–305.

    Google Scholar 

  158. Schnittger I, Fitzgerald PJ, Gordon EJ, Alderman EL, Popp RL. Computerized quantitative analysis of left ventricular wall motion by two-dimensional echocardiography. Circulation 1984;70:242–254.

    Google Scholar 

  159. Falsetti HL, Marcus ML, Kerber RE, Skorton DJ. Quanti-tation of myocardial ischemia and infarction by left ventricu-lar imaging (editorial). Circulation 1981;63:747–751.

    Google Scholar 

  160. Kerber RE, Marcus ML, Ehrhardt J, Wilson R, Abboud FM. Correlation between echocardiographically demonstrated segmental dyskinesis and regional myocardial perfusion. Circulation 1975;52:1097–1104.

    Google Scholar 

  161. Blumenthal DS, Becker LC, Bulkley BH, Hutchins GM, Weisfeldt ML, Weiss JL. Impaired function of salavaged myocardium: two-dimensional echocardiographic quantita-tion of regional wall thickening in the open-chest dog. Circu-lation 1983;67:225–233.

    Google Scholar 

  162. Herman MV, Gorlin R. Implications of left ventricular asynergy. Am J Cardiol 1982;23:538–547.

    Google Scholar 

  163. Edwards WD, Tajik AJ, Seward JB. Standardized nomen-clature and anatomic basis for regional tomographic analysis of the heart. Mayo Clin Proc 1981;56:479–497.

    Google Scholar 

  164. Guyer DE, Gibson TC, Gillam LD, King ME, Wilkins GT, Guerrero L, Weyman AE. A new echocardiographic model for quantifying three-dimensional endocardial surface area. J Am Coll Cardiol 1986;8:819–829.

    Google Scholar 

  165. Guyer DE, Foale RA, Gillam LD, Wilkins GT, Guerrero JL, Weyman AE. An echocardiographic technique for quantify-ing and displaying the extent of regional left ventricular dyssynergy. J Am Coll Cardiol 1986;8:830–835.

    Google Scholar 

  166. Wilkins GT, Southern JF, Choong CY, Thomas JD, Fallon JT, Guyer DE, Weyman AE. Correlation between echocardiog-raphic endocardial surface mapping of abnormal wall motion and pathologic infarct size in autopsied hearts. Circulation 1988;77:978–987.

    Google Scholar 

  167. Picard MH, Wilkins GT, Ray PA, Weyman AE. Natural history of left ventricular size and function after acute myo-cardial infarction: assessment and prediction by echocar-diographic endocardial surface mapping. Circulation 1990; 82:484–494.

    Google Scholar 

  168. Medina R, Panidis IP, Morganroth J, Kotler MN, Mintz GS. The value of echocardiographic regional wall motion abnor-malities in detecting coronary artery disease in patients with or without a dilated left ventricle. AmHeart J 1985;109: 799–803.

    Google Scholar 

  169. Rasmussen S, Corya B, Fiegenbaum H, Knoebel S. Detec-tion of myocardial scar tissue by M-mode echocardiography. Circulation 1978;57:230–237.

    Google Scholar 

  170. Weyman AE, Peskoe SM, Williams ES, Dillon JC, Fiegen-baum H. Detection of left ventricular aneurysms by cross-sectional echocardiography. Circulation 1976;54:936–944.

    Google Scholar 

  171. Catherwood E, Mintz GS, Kotler MN, Parry WR, Segal BL. Two-dimensional echocardiographic recognition of left ventricular pseudoaneurysm. Circulation 1980;62:294–303.

    Google Scholar 

  172. Wann LS, Faris JV, Childress RH, Dillon JC, Weyman AE, Fiegenbaum H. Exercise cross-sectional echocardiography in ischemic heart disease. Circulation 1979;60:1300–1308.

    Google Scholar 

  173. Morganroth J, Chen CC, David D, Sawin HS, Naito M, Par-rotto C, Meixell L. Exercise cross-sectional echocardiog-raphic diagnosis of coronary artery disease. Am J Cardiol 1981;47:20–26.

    Google Scholar 

  174. Armstrong WF, O'Donnell J, Ryan T, Fiegenbaum H. Effect of prior myocardial infarction and extent and location of coronary artery disease on accuracy of exercise echocardiog-raphy. J Am Coll Cardiol 1987;10:531–538.

    Google Scholar 

  175. Jaarsma W, Visser CA, Funke Kupper AJ, Res JCJ, Van Eenige MJ, Roos JP. Usefulness of two-dimensional exercise echocardiography shortly after myocardial infarction. Am J Cardiol 1986;57:86–90.

    Google Scholar 

  176. Applegate RJ, Dell'Italia LJ, Crawford MH. Usefulness of two-dimensional exercise echocardiography during low-level exercise testing early after uncomplicated acute myo-cardial infarction. Am J Cardiol 1987;60:10–14.

    Google Scholar 

  177. Ryan T, Armstrong WF, O'Donnell JA, Fiegenbaum H. Risk stratification after acute myocardial infarction by means of exercise two-dimensional echocardiography. Am Heart J 1987;114:1305–1316.

    Google Scholar 

  178. Fung AY, Gallagher KP, Buda AJ. The physiologic basis of dobutamine as compared with dipyridamole stress interven-tions in the assessment of critical coronary stenosis. Circu-lation 1987;76:943–951.

    Google Scholar 

  179. Mannering D, Cripps T, Leech G, Mehta N, Valantine H, Gilmour S, Bennett, ED. The dobutamine stress test as an alternative to exercise testing after acute myocardial in-farction. Br Heart J 1988;59:521–526.

    Google Scholar 

  180. Berthe C, Pierard LA, Hiernaux M, Trotteur G, Lempereur P, Carlier J, Kulbertus HE. Predicting the extent and loca-tion of coronary artery disease in acute myocardial in-farction by echocardiography during dobutamine infusion. Am J Cardiol 1986;58:1167–1172.

    Google Scholar 

  181. Sawada SG, Segar DS, Ryan T, Brown SE, Dohan AM, Williams R, Fineberg NS, Armstrong WF, Fiegenbaum H. Echocardiographic detection of coronary artery disease dur-ing dobutamine infusion. Circulation 1991;83:1605–1614.

    Google Scholar 

  182. Cohen JL, Greene TO, Ottenweller J, Binenbaum SZ, Wilchfort SD, Kim CS. Dobutamine digital echocardiogra-phy for detecting coronary artery disease. Am J Cardiol 1991;67:1311–1318.

    Google Scholar 

  183. Martin TW, Seaworth JF, Johns, JP, Pupa LE, Condos WR. Comparison of adenosine, dipyridamole and dobutamine in stress echocardiography. Ann Intern Med 1992;116:190–196.

    Google Scholar 

  184. Afridi I, Quinones MA, Zoghbi WA, Cheirif J. Dobutamine stress echocardiography: sensitivity, specificity, and predic-tive value for future cardiac events. Am Heart J 1994;127:1510–1515.

    Google Scholar 

  185. Picano E, Lattanzi F, Orlandini A, Marini C, L'Abbate A. Stress echocardiography and the human factor: the impor-tance of being expert. J Am Coll Cardiol 1991;17:661–669.

    Google Scholar 

  186. Parisi AF, Moynihan PF, Folland ED, Strauss WE, Sharma GV, Sasahara AA. Echocardiography in acute and remote myocardial infarction. Am J Cardiol 1980;46:1205–1214.

    Google Scholar 

  187. Shen W, Khanderia BK, Edwards WD, Oh JK, Miller FA Jr, Naessens JM, Tajik AJ. Value and limitations of two-dimen-sional echocardiography in predicting myocardial infarct size. Am J Cardiol 1991;68:1143–1149.

    Google Scholar 

  188. Oh JK, Gibbons RJ, Christian TF, Gersh BJ, Click RL, Sit-thisook S, Tajik AJ, Seward JB. Correlation of regional wall motion abnormalities detected by two-dimensional echo-cardiography with perfusion defect determined by techne-tium 99m sestamibi imaging in patients treated with reper-fusion therapy during acute myocardial infarction. Am Heart J 1996;131:32–37.

    Google Scholar 

  189. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium [published erratum appears in Circulation 1993;87:2070]. Circulation 1993;87:1–20.

    Google Scholar 

  190. Cigarroa CG, deFilippi CR, Brickner ME, Alvarez LG, Wait MA, Grayburn PA. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 1993;88:430–436.

    Google Scholar 

  191. La Canna G, Alfieri O, Giubbini R, Gargano M, Ferrari R, Visioli O. Echocardiography during infusion of dobutamine for identification of reversible dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 1994;23: 617–626.

    Google Scholar 

  192. Afridi I, Kleiman NS, Raizner AE, Zoghbi WA. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation 1995;91:663–670.

    Google Scholar 

  193. deFilippi CR, Willet DL, Irani WN, Eichhorn EJ, Velasco CE, Grayburn PA. Comparison of myocardial contrast echo-cardiography and low-dose dobutamine stress echocardiog-raphy in predicting recovery of left ventricular function af-ter coronary revascularization in chronic ischemic heart disease. Circulation 1995;92:2863–2868.

    Google Scholar 

  194. Afridi I, Main ML, Grayburn PA. Accuracy of dobutamine echocardiography for detection of myocardial viability in patients with an occluded left anterior descending coronary artery. J Am Coll Cardiol 1996;28:455–459.

    Google Scholar 

  195. Vanoverschelde J-LJ, D'Hondt AM, Marwick T, Gerber BL, De Kock M, Dion R, Wijns W, Melin JA. Head-to-head com-parison of exercise-redistribution-reinjection thallium sin-gle-photon emission computed tomography and low dose dobutamine echocardiography for prediction of reversibility of chronic left ventricular ischemic dysfunction. J Am Coll Cardiol 1996;28:432–442.

    Google Scholar 

  196. Pierard LA, DeLandsheere CM, Berthe C, Rigo P, Kubertus HE. Identification of viable myocardium by echocardiogra-phy during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with posi-tron emission tomography. J Am Coll Cardiol 1990;15:1021–1031.

    Google Scholar 

  197. Barilla F, Gheorghiade M, Alam M, Khaja F, Goldstein S. Low-dose dobutamine in patients with acute myocardial in-farction identifies viable but not contractile myocardium and predicts the magnitude of improvement in wall motion ab-normalities in response to coronary revascularization. Am Heart J 1991;122:1522–1531.

    Google Scholar 

  198. Smart SC, Sawada S, Ryan T, Segar D, Atherton L, Berk-ovitz K, Bourdillon PDV, Fiegenbaum. Low-dose dobutamine echocardiography detects reversible dysfunction af-ter thrombolytic therapy of acute myocardial infarction. Circulation 1993;88:405–415.

    Google Scholar 

  199. Ellis SG, Wynne J, Braunwald E, Henschke CI, Sandor T, Kloner RA. Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 1984;107: 13–19.

    Google Scholar 

  200. Bolli R, Zhu WX, Myers ML, Hartley CJ, Roberts R. Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional dete-rioration. Am J Cardiol 1985;56:964–968.

    Google Scholar 

  201. Chen C, Li L, Chen LL, Prada JV, Chen MH, Fallon JT, Weyman AE, Waters D, Gillam L. Incremental doses of dobutamine induce a biphasic response in dysfunctional left ventricular regions subtending coronary stenoses. Circulation 1995;92:756–766.

    Google Scholar 

  202. Sklenar J, Ismail S, Villanueva FS, Goodman NC, Glasheen WP, Kaul S. Dobutamine echocardiography for determining the extent of myocardial salvage after reperfusion: an ex-perimental evaluation. Circulation 1994;90:1502–1512.

    Google Scholar 

  203. Lombardo A, Loperfido F, Trani C, Pennestri F, Rossi E, Giordano A, Possati G, Maseri A. Contractile reserve of dysfunctional myocardium after revascularization: a dobutamine stress echocardiographic study. J Am Coll Cardiol 1997;30:633–640.

    Google Scholar 

  204. Mock MB, Ringqvist I, Fisher LD, Davis KB, Chaitman BR, Kouchoukos NT, Kaiser GC, Alderman E, Ryan TJ, Russell RO Jr, Mullin S, Fray D, Killip T III, and participants in the Coronary Artery Surgery Study. Survival of medically treated patients in the coronary artery surgery study (CASS) registry. Circulation 1982;66:562–568.

    Google Scholar 

  205. Marcovitz PA, Shayna V, Horn RA, Hepner A, Armstrong WF. Value of dobutamine stress echocardiography in deter-mining the prognosis of patients with known or suspected coronary artery disease. Am J Cardiol 1996;78:404–408.

    Google Scholar 

  206. Panza JA, Dilsizian V, Laurienzo JM, Curiel RV, Katsiyian-nis PT. Relation between thallium uptake and contractile response to dobutamine. Circulation 1995;91:990–998.

    Google Scholar 

  207. Villanueva FS, Spotnitz WD, Jayaweera AR, Gimple LW, Dent J, Kaul S: On-line intraoperative quantitation of regional myocardial perfusion during coronary artery bypass graft operations with myocardial contrast two-dimensional echocardiography. J Thorac Cardiovasc Surg 1992; 104: 1524–1531.

    Google Scholar 

  208. Keller MW, Glasheen WP, Smucker ML, Burwell LR, Wat-son DD, Kaul S. Myocardial contrast echocardiography in humans, II: assessment of coronary blood flow reserve. J Am Coll Cardiol 1989;12:924–935.

    Google Scholar 

  209. Ragosta M, Camarano GP, Kaul S, Powers E, Sarembock IJ, Gimple LW. Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction: new insights using myocardial contrast echocardiography. Circu-lation 1994;89:2562–2569.

    Google Scholar 

  210. Cheirif J, Zoghbi WA, Raizner AE, Minor ST, Winters WL, Klein MS, DeBauche TL, Lewis JM, Roberts R, Quinones MA. Assessment of myocardial perfusion in humans by myo-cardial contrast echocardiography, I: evaluation of regional coronary artery reserve by peak contrast intensity. J Am Coll Cardiol 1988;11:735–743.

    Google Scholar 

  211. Skyba DM, Camarano G, Goodman NC, Price RJ, Skalak TC, Kaul S. Hemodynamic characteristics, myocardial ki-netics and microvascular rheology of FS-069, a second-gen-eration echocardiographic contrast agent capable of produc-ing myocardial opacification from a venous injection. J Am Coll Cardiol 1996;28:1292–1300.

    Google Scholar 

  212. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial in-farction. N Engl J Med 1992;327:1825–1831.

    Google Scholar 

  213. Sabia PJ, Powers ER, Jayaweera AR, Ragosta M, Kaul S. Functional significance of collateral blood flow in patients with recent myocardial infarction. Circulation 1992;85:2080–2089.

    Google Scholar 

  214. Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, Masuyama T, Katibatake A, Minamino T. Lack of myocardial perfusion immediately after successful thrombolysis: a pre-dictor of poor recovery of left ventricular function in ante-rior myocardial infarction. Circulation 1992;85:1699–1705.

    Google Scholar 

  215. Porter TR, D'sa A, Turner C, Jones LA, Minisi AJ, Mohanty PK, Vetrovec GW, Nixon J. Myocardial contrast echo-cardiography for the assessment of coronary blood flow re-serve: validation in humans. J AmColl Cardiol 1993;21:349–355.

    Google Scholar 

  216. DeMaria AN, Bommer WJ, Riggs K, Dajee A, Keown M, Kwan OL, Mason DT. Echocardiographic visualization of myocardial perfusion by left heart and intracoronary injec-tion of echo contrast agents. (Abstract). Circulation 1980;62(Suppl III):III-143.

    Google Scholar 

  217. Reisner SA, Ong LS, Lichtenberg GS, Amico AF, Shapiro JR, Allen MN, Melzer RS. Myocardial perfusion imaging by contrast echocardiography with use of intracoronary soni-cated albumin in humans. J Am Coll Cardiol 1989;14:660–665.

    Google Scholar 

  218. Feinstein SB, Cheirif J, Ten Cate FJ, Silverman P, Heiden-reich P, Dick C, Desir R, Armstrong W, Quinones M, Shah P. Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J Am Coll Cardiol 1990;16:316–324.

    Google Scholar 

  219. Keller MW, Glasheen W, Kaul S. Albunex, a safe and effec-tive commercially produced agent for myocardial contrast echocardiography. J Am Soc Echocardiogr 1989;2:48–52.

    Google Scholar 

  220. Keller MW, Glasheen W, Teja K, Gear A, Kaul S. Myocardial contrast echocardiography without significant hemody-namic effects or reactive hyperemia: a major advantage in the imaging of regional myocardial perfusion. J Am Coll Cardiol 1988;12:1039–1047.

    Google Scholar 

  221. Ten Cate FJ, Widimsky P, Cornel JH, Waldstein DJ, Serruys PW, Waaler A. Intracoronary albunex. Its effects on left ventricular hemodynamics, function and coronary sinus flow in humans. Circulation 1993;88:2123–2127.

    Google Scholar 

  222. Wei K, Skyba DM, Firschke C, Jayaweera A, Lindner JR, Kaul S. Interactions between micobubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol 1997; 29:1081–1088.

    Google Scholar 

  223. Porter TR, Xie F. Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles: demonstration and potential mechanisms. Circulation 1995;92:2391–2395.

    Google Scholar 

  224. Burns PN, Powers JE, Simpson DH, Uhlendorf V, Fritsche T. Harmonic imaging: principles and preliminary results. Clin Radiol 1996;51(Suppl I):50–55.

    Google Scholar 

  225. Mulvaugh SL, Foley DA, Aeschbacher BC, Klarich KK, Seward JB. Second harmonic imaging of an intravenously administered echocardiographic contrast agent: visualiza-tion of coronary arteries and measurement of coronary blood flow reserve. J Am Coll Cardiol 1996;27:1519–1525.

    Google Scholar 

  226. Grayburn PA, Erickson JM, Escobar J, Womack L, Velasco CE. Peripheral intravenous myocardial contrast echo-cardiography using a 2% dodecafluoropentane emulsion: identification of myocardial risk area and infarct size in the canine model of ischemia. J Am Coll Cardiol 1995;26: 1340–1347.

    Google Scholar 

  227. Kaul S, Senior R, Dittrich H, Raval U, Khattar R, Lahiri A. Detection of coronary artery disease with myocardial con-trast echocardiography: comparison with 99m Tc-sestamibi single-photon emission computed tomography. Circulation 1997;96:785–792.

    Google Scholar 

  228. Firschke C, Lindner JR, Wei K, Goodman NC, Skyba DM, Kaul S. Myocardial perfusion imaging in the setting of Coronary artery stenosis and acute myocardial infarction using venous injection of a second-generation echocardiographic contrast agent. Circulation 1997;96:959–967.

    Google Scholar 

  229. Keller MW, Segal SS, Kaul S, Duling B. The behaviour of sonicated albumin microbubbles within the microcirculation: a basis for their use during myocardial contrast echocardiog-raphy. Circ Res 1989;65:458–467.

    Google Scholar 

  230. Skyba DM, Jayaweera AR, Goodman NC, Ismail S, Cama-rano GP, Kaul S. Quantification of myocardial perfusion with myocardial contrast echocardiography from left atrial injec-tion of contrast: implications for venous injection. Circulation 1994;90:1513–1521.

    Google Scholar 

  231. Ismail S, Jayaweera AR, Goodman NC, Camarano GP, Skyba DM, Kaul S. Detection of coronary artery stenoses and quantification of blood flow mismatch during coronary hyperemia with myocardial contrast echocardiography. Cir-culation 1995;91:821–830.

    Google Scholar 

  232. Villanueva FS, Camarano G, Ismail S, Goodman NC, Skle-nar J, Kaul S. Coronary reserve abnormalities in the infarcted myocardium. Assessment of myocardial viability immediately versus late after reflow by contrast echocar-diography. Circulation 1996;94:748–754.

    Google Scholar 

  233. Firschke C, Lindner JR, Goodman NC, Skyba DM, Wei K, Kaul S. Myocardial contrast echocardiography in acute myo-cardial infarction using aortic root injections of microbub-bles in conjunction with harmonic imaging: potential appli-cation in the cardiac catheterization laboratory. J Am Coll Cardiol 1997;29:207–216.

    Google Scholar 

  234. Villaneuva FS, Glasheen WP, Sklenar J, Kaul S. Charac-terization of spatial patterns of flow within the reperfused myocardium by myocardial contrast echocardiography. Im-plications in determining extent of myocardial salvage. Cir-culation 1993;88:2596–2606.

    Google Scholar 

  235. Kloner RA, Ganote CE, Jennings RB. The ‘no-reflow’ phe-nomenon after temporary coronary occlusion in the dog. J Clin Invest 1974;54:1496–1508.

    Google Scholar 

  236. Willerson JT, Watson JT, Templeton GH, Fixler DE. Re-duced myocardial reflow and increased coronary vascular resistance following prolonged myocardial ischemia in the dog. Circ Res 1975;36:771–781.

    Google Scholar 

  237. Sakata Y, Kodama K, Adachi T, Lim Y-J, Ishikura F, Fuji H, Masuyama T, Hirayama A. Comparison of myocardial con-trast echocardiography and coronary angiography for as-sessing the acute protective effects of collateral recruitment during occlusion of the left anterior descending coronary artery at the time of elective angioplasty. Am J Cardiol 1997;79:1329–1333.

    Google Scholar 

  238. Shishido T, Beppu S, Matsuda H, Yutani C, Miyatake K. Extension of hemorrhage after reperfusion of occluded Coronary artery: contrast echocardiographic assessment in dogs. J Am Coll Cardiol 1997;30:585–591.

    Google Scholar 

  239. Cobb FR, Bache RJ, Rivas F, Greenfield JC. Local effects of acute cellular injury on regional myocardial blood flow. J Clin Invest 1976;57:1359–1368.

    Google Scholar 

  240. Heyndrick GR, Amano J, Patrick TA, Manders WT, Rogers GG, Rosendorff C, Vatner SF. Effects of coronary artery reperfusion on regional myocardial blood flow and function in conscious baboons. Circulation 1985;71:1029–1037.

    Google Scholar 

  241. Kemper AJ, O'Boyle JE, Cohen CA, Taylor A, Parisi AF. Hydrogen peroxide contrast echocardiography: quantifica-tion in vivo of myocardial risk area during coronary occlu-sion and of the necrotic area remaining after myocardial reperfusion. Circulation 1984;70:309–317.

    Google Scholar 

  242. Johnson WB, Malone SA, Pantely GA, Anselone CG, Bris-tow JD. No reflow and extent of infarction during maximal vasodilation in the porcine heart. Circulation 1988;78:462–472.

    Google Scholar 

  243. Vanhaecke J, Flameng W, Borgers M, Jang K, Van de Werf F, De Geest H. Evidence for decreased coronary flow re-serve in viable postischemic myocardium. Circ Res 1990;67: 1201–1210.

    Google Scholar 

  244. Sabia PJ, Powers ER, Ragosta M, Smith WH, Watson DD, Kaul S. Role of quantitative planar thallium-201 imaging for determining viability in patients with acute myocardial in-farction and a totally occluded infarct-related artery. J Nucl Med 1993;34:728–736.

    Google Scholar 

  245. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW: Quantitative planar rest-redistribution thallium-201 imag-ing in the detection of myocardial viability and prediction of improvement in left ventricular function after coronary by-pass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–1641.

    Google Scholar 

  246. Beller GA. Comparison of 201 TI scintigraphy and low-dose dobutamine echocardiography for the noninvasive assess-ment of myocardial viability. Circulation 1996;94:2681–2684.

    Google Scholar 

  247. Sinusas AJ, Trautman KA, Bergin JD, Watson DD, Ruiz M, Smith WH, Beller GA. Quantification of area at risk during coronary occlusion and degree of myocardial salvage after reperfusion with technetium-99m methoxyisobutyl isoni-trile. Circulation 1990;82:1424–1437.

    Google Scholar 

  248. Carlos ME, Smart SC, Wynsen JC, Sagar KB. Dobutamine stress echocardiography for risk stratification after myocar-dial infarction. Circulation 1997;95:1402–1410.

    Google Scholar 

  249. Elhendy A, Geleijnse ML, Roelandt JRTC, van Domberg RT, Ten Cate FJ, Nierop PR, Bax JJ, El-Refaee M, Ibrahim MM. Comparison of dobutamine stress echocardiography and 99m-technetium sestamibi SPECT myocardial perfu-sion scintigraphy for predicting extent of coronary artery disease in patients with healed myocardial infarction. Am J Cardiol 1997;79:7–12.

    Google Scholar 

  250. Baer FM, Voth E, Deutsch HJ, Schneider CA, Horst M, DeVivie ER, Schicha H, Erdmann E, Sechtem U. Predictive value of low dose dobutamine transesophageal echocardiog-raphy and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular func-tion after successful revascularization. J Am Coll Cardiol 1996;28:60–69.

    Google Scholar 

  251. Sklenar J, Camarano G, Goodman C, Ismail S, Jayaweera A, Kaul S. Contractile versus microvascular reserve for the determination of the extent of myocardial salvage after reperfusion. The effect of residual coronary stenosis. Circu-lation 1996;94:1430–1440.

    Google Scholar 

  252. Main ML, Grayburn PA, Landau C, Afridi I. Relation of contractile reserve during low-dose dobutamine echo-cardiography and angiographic extent and severity of Coronary artery disease in the presence of left ventricular dys-function. Am J Cardiol 1997;79:1309–1313.

    Google Scholar 

  253. Bach DS, Eagle KA. Dobutamine stress echocardiography. Stressing the indications for preoperative testing. Circulation 1997;95:8–10.

    Google Scholar 

  254. Arai AE, Grauer SE, Anselone CG, Pantley GA, Bristow D. Metabolic adaptation to a gradual reduction in myocardial blood flow. Circulation 1995;92:244–252.

    Google Scholar 

  255. Kemper AJ, O'Boyle JE, Cohen CA, Taylor A, Parisi AF. Hydrogen peroxide contrast echocardiography: quantifica-tion in vivo of myocardial risk area during coronary occlu-sion and the necrotic area remaining after myocardial reper-fusion. Circulation 1984;70:309–317.

    Google Scholar 

  256. Kaul S, Pandian NG, Gillam LD, Newell JB, Okada RD, Weyman AE. Contrast echocardiography in acute myocar-dial ischemia: III. An in-vivo comparison of the extent of abnormal wall motion with the “area at risk” for necrosis. J Am Coll Cardiol 1986;7:383–392.

    Google Scholar 

  257. Weyman AE, Franklin TD, Hogan RD, Gillam LD, Wiske PS, Newell J, Gibbons EF, Foale RA. Importance of tempo-ral heterogeneity in assessing the contraction abnormalities associated with acute myocardial infarction. Circulation 1984;70:102–112.

    Google Scholar 

  258. Smart SC. The clinical utility of echocardiography in the assessment of myocardial viability. J Nucl Med 1994;35(Suppl):49S–58S.

    Google Scholar 

  259. Nagueh SF, Vaduganathan P, Ali N, Blaustein A, Verani MS, Winters WL Jr, Zoghbi WA. Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 to-mography and dobutamine echocardiography. J Am Coll Cardiol 1997;29:985–993.

    Google Scholar 

  260. Meza MF, Kates MA, Barbee RW, Revall S, Perry B, Murgo JP, Cheirif J. Combination of dobutamine and myocardial contrast echocardiography to differentiate postischemic from infarcted myocardium. J Am Coll Cardiol 1997;29: 974–984.

    Google Scholar 

  261. Secknus MA, Marwick TH. Evolution of dobutamine echo-cardiography protocols and indications: safety and side ef-fects in 3,011 studies over 5 years. J Am Coll Cardiol 1997;29:1234–1240.

    Google Scholar 

  262. Shen Y, Vatner SF. Mechanism of impaired myocardial func-tion during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res 1995;76:479–488.

    Google Scholar 

  263. Chen C, Chen L, Fallon JT, Ma L, Li L, Bow L, Knibbs D, McKay R, Gillam LD, Waters DD. Functional and structural alterations with 24-hour myocardial hibernation and recov-ery after reperfusion. A pig model of myocardial hiberna-tion. Circulation 1996;94:507–516.

    Google Scholar 

  264. Chen C, Ma L, Linfert DR, Lai T, Fallon JT, Gillam LD, Waters DD, Tsongalis GJ. Myocardial cell death and apop-tosis in hibernating myocardium. J Am Coll Cardiol 1997; 30:1407–1412.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jugdutt, B.I., Manyari, D.E. & Humen, D.P. Detection of Viability of Dysfunctional Myocardium in Coronary Heart Disease. II. Echocardiography. Heart Fail Rev 2, 207–233 (1998). https://doi.org/10.1023/A:1009724930745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009724930745

Navigation