Skip to main content
Log in

Calibration of magnitude scales for earthquakes of the Mediterranean

  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

In order to provide the tools for uniform size determination for Mediterranean earthquakes over the last 50-year period of instrumental seismology, we have regressed the magnitude determinations for 220 earthquakes of the European-Mediterranean region over the 1977–1991 period, reported by three international centres, 11 national and regional networks and 101 individual stations and observatories, using seismic moments from the Harvard CMTs. We calibrate M(M0) regression curves for the magnitude scales commonly used for Mediterranean earthquakes (ML, MWA, mb, MS, MLH, MLV, MD, M); we also calibrate static corrections or specific regressions for individual observatories and we verify the reliability of the reports of different organizations and observatories. Our analysis shows that the teleseismic magnitudes (mb, MS) computed by international centers (ISC, NEIC) provide good measures of earthquake size, with low standard deviations (0.17–0.23), allowing one to regress stable regional calibrations with respect to the seismic moment and to correct systematic biases such as the hypocentral depth for MS and the radiation pattern for mb; while mb is commonly reputed to be an inadequate measure of earthquake size, we find that the ISC mb is still today the most precise measure to use to regress MW and M0 for earthquakes of the European-Mediterranean region; few individual observatories report teleseismic magnitudes requiring specific dynamic calibrations (BJI, MOS). Regional surface-wave magnitudes (MLV, MLH) reported in Eastern Europe generally provide reliable measures of earthquake size, with standard deviations often in the 0.25–0.35 range; the introduction of a small (± 0.1–0.2) static station correction is sometimes required. While the Richter magnitude ML is the measure of earthquake size most commonly reported in the press whenever an earthquake strikes, we find that ML has not been computed in the European-Mediterranean in the last 15 years; the reported local magnitudes MWA and ML do not conform to the Richter formula and are of poor quality and little use, with few exceptions requiring ad hoc calibrations similar to the MS regression (EMSC, ATH). The duration magnitude MD used by most seismic networks confirms that its use requires accurate station calibrations and should be restricted only to events with low seismic moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K., 1981, Magnitudes of large shallow earthquakes from 1904 to 1980, Phys. Earth Planet. Int. 27, 72–92.

    Google Scholar 

  • Abe, K. and Kanamori, H., 1980. Magnitudes of great shallow earthquakes from 1953 to 1977, Tectonophysics 62, 191–203.

    Google Scholar 

  • Aki, K., 1967, Scaling law of seismic spectrum, J. Geophys. Res. 72, 1217–1231.

    Google Scholar 

  • Ambraseys, N. N., 1985, Magnitude assessment of northwestern European earthquakes, Earthq. Eng. Struct. Dyn. 13, 307–320.

    Google Scholar 

  • Ambraseys, N. N., 1990, Uniform magnitude re-evaluation of European earthquakes associated with strong-motion records, Earthq. Eng. Struct. Dyn. 19, 1–20.

    Google Scholar 

  • Boore, D. M., 1989, The Richter scale: its development and use for determining earthquake source parameters, Tectonophysics 166, 1–14.

    Google Scholar 

  • Brune, J. N. and Engen, G. R., 1969, Excitation of mantle Love waves and definition of mantle wave magnitude, Bull. Seism. Soc. Am. 59, 923–933.

    Google Scholar 

  • Bune, V. I., Vvedenskaya, N. A., Gorbunova, I. V., Kondorskaya, N. V., Landyreva, N. S. and Fedorova, I. V., 1970, Correlation of M LH and m pv by data of the network of seismic station of the U.S.S.R., Geophys. J. R. Astr. Soc. 19, 533–542.

    Google Scholar 

  • Christoskov, L., Kondorskaya, N. V. and Vanek, J., 1982, Determination of reliable earthquake magnitudes by means of a homogeneous system of reference stations, Phys. Earth Planet. Int. 30, 169–171.

    Google Scholar 

  • Chung, D. H. and Bernreuter, D. L., 1981, Regional relationship among earthquake magnitude scales, Rev. Geophys. Space Phys. 19, 649–663.

    Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S., 1990, Current plate motions, Geophys. J. Int. 101, 425–478.

    Google Scholar 

  • Duda, S. J. and Nortman, R., 1983, Normal, blue and red earthquakes - a new way of earthquake classification on the basis of body-wave magnitudes, Tectonophysics 93, 295–306.

    Google Scholar 

  • Dziewonski, A. M., Chou, T. A. and Woodhouse, J. H., 1981, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res. 86, 2825–2852.

    Google Scholar 

  • Ekström, G. and Dziewonski, A. M., 1988, Evidence of bias in estimations of earthquake size, Nature 332, 319–323.

    Google Scholar 

  • Ekström, G., Dziewonski, A. M. and Stein, J. M., 1986, Single station CMT: application to the Michoacan, Mexico earthquake of September 19, 1995, Geophys. Res. Lett. 13, 173–176.

    Google Scholar 

  • Geller, R. J., 1976, Scaling relation for earthquake source parameters and magnitudes, Bull. Seism. Soc. Am. 66, 1501–1523.

    Google Scholar 

  • Giardini, D., Dziewonski, A. M., Woodhouse, J. H. and Boschi, E., 1984, Systematic analysis of the seismicity of the Mediterranean region using the centroid moment tensor method Bull. Geofis. Teor. Sper. 121–142.

  • Giardini, D., Boschi, E. and Palombo, B., 1993, Moment tensor inversion from MedNet data: Earthquakes of the Mediterranean, Geophys. Res. Lett. 20, 273–276.

    Google Scholar 

  • Giardini, D., Malagnini, L., Palombo, B. and Boschi, E., 1994, Broad-bandmoment tensor inversion from single station, regional surface waves for the 1990 NW Iran earthquake sequence, Ann. Geofis. 37, 1645–1658.

    Google Scholar 

  • Gutenberg, B., 1945a, Amplitudes of surface waves and magnitudes of shallow earthquakes, Bull. Seism. Soc. Am. 35, 3–12.

    Google Scholar 

  • Gutenberg, B., 1945b, Amplitude of P, PP and S and magnitudes of shallow earthquakes, Bull. Seism. Soc. Am. 35, 57–69.

    Google Scholar 

  • Gutenberg, B. and Richter, C. F., 1954. Seismicity of the Earth and Associated Phenomena. Princeton University Press, Princeton, N.J., 2nd Ed., 310 pp.

    Google Scholar 

  • Gutenberg, B. and Richter, C. F., 1956. Magnitude and energy of earthquakes, Ann. Geofis. 9, 1–15.

    Google Scholar 

  • Haskell, N. A., 1964, Total energy and energy spectral density of elastic wave radiation from propagating faults, Bull. Seism. Soc. Am. 54, 1811–1841.

    Google Scholar 

  • Hanks, T. C. and Boore, D., 1984, Moment-magnitude relations in theory and practice, J. Geophys. Res. 89, 6229–6235.

    Google Scholar 

  • Heaton, T. H., Tajima, F. and Mori, W., 1986, Estimating ground motions using recorded accelerograms, Surveys in Geophysics, 8, 25–83.

    Google Scholar 

  • Jackson, J. A. and McKenzie, D. P., 1988. The relationship between plate motions and moment tensors, and the rates of active deformation in the Mediterranean and Middle East, Geophys. J. 93, 45–73.

    Google Scholar 

  • Kanamori, H., 1977. The energy release in great earthquakes, J. Geophys. Res. 82, 2981–2987.

    Google Scholar 

  • Kanamori, H., 1983, Magnitude scale and quantification of earthquakes, Tectonophysics 93, 185–199.

    Google Scholar 

  • Kanamori, H. and Anderson, D. L., 1975, Theoretical basis of some empirical relation in seismology, Bull. Seism. Soc. Am. 65, 1073–1095.

    Google Scholar 

  • Kanamori, H. and Jennings, P. C., 1978, Determination of local magnitude, ML, from strong motion accelerograms, Bull. Seism. Soc. Am. 68, 471–485.

    Google Scholar 

  • Kanamori, H. and Given, J. W., 1981. Use of long-period surface waves for rapid determination of earthquakes-source parameters, Phys. Earth Planet. Int. 11, 312–332.

    Google Scholar 

  • Kanamori, H., Mori, J., Hauksson, E., Heaton, T. H., Hutton, L. K. and Jones, L. M., 1993. Determination of earthquake energy release and ML using TERRASCOPE, Bull. Seism. Soc. Am. 83, 330–346.

    Google Scholar 

  • Karnik, V., 1968, Seismicity of the European area, Part I, Academia of Prague.

  • Karnik, V., 1969, Seismicity of the European area, Part II, Academia of Prague.

  • Karnik, V. and Klima, K., 1993, Magnitude-frequency distribution in the European-Mediterranean earthquake regions, Tectonophysics 220, 309–323.

    Google Scholar 

  • Karnik, V., Kondorskaya, N., Riznitchenko, J., Savarensky, E., Soloviev, S., Shebalin, N., Vanek, J. and Zatopek, A., 1962, Standardization of the earthquake magnitude scale, Studia geoph. et geod. 6, 41–47.

    Google Scholar 

  • Kiratzi, A. A. and Papazachos, B. C., 1984, Magnitude scales for earthquakes in Greece, Bull. Seism. Soc. Am. 74, 969–985.

    Google Scholar 

  • Lilwall, R. C., 1987, Station threshold bias in short-period amplitude distance and station terms used to compute body-wave magnitude m b, Geophys. J. R. Astr. Soc. 91, 1127–1133.

    Google Scholar 

  • Marshall, P. D. and Basham, P., 1972, Discrimination of earthquakes and underground nuclear explosions employing an improved MS scale, Geophys. J. R. Astr. Soc. 28, 431–458.

    Google Scholar 

  • Noguchi, S. and Abe, K., 1977. Earthquake source mechanism and M S-m b relation, Zisin II 30, 487–507.

    Google Scholar 

  • Okal, E.A., 1992, Use of themantle magnitude M m for the reassessment of the seismic moment of historical earthquakes. I: shallow events, Pure Appl. Geophys. 139, 17–57.

    Google Scholar 

  • Okal, E. A. and Talandier, J., 1989, M m: a variable-period mantle magnitude, J. Geophys. Res. 94, 4169–4193.

    Google Scholar 

  • Panza, G. F., Duda, S. J., Cernobori, L. and Herak, M., 1989. Gutenberg's surface-wave magnitude calibrating function: theoretical basis from synthetic seismograms, Tectonophysics 166, 35–43.

    Google Scholar 

  • Purcaru, G. and Berckhemer, H., 1978. A magnitude scale for very large earthquakes, Tectonophysics 49, 189–198.

    Google Scholar 

  • Richter, C. F., 1935, An instrumental earthquake magnitude scale, Bull. Seism. Soc. Am. 25, 1–32.

    Google Scholar 

  • Richter, C. F., 1958, Elementary Seismology, Freeman, San Francisco, Calif., 768 pp.

    Google Scholar 

  • Ritsema, J. and Lay, T., 1995. Long-period regional wave moment tensor inversion for earthquakes in the western United States, J. Geophys. Res. 100, 9853–9864.

    Google Scholar 

  • Romanowicz, B. and Suarez, G., 1983, On an improved method to obtain the moment tensor and depth of earthquakes from the amplitude spectrum of Rayleigh waves, Bull. Seism. Soc. Am. 73, 1513–1526.

    Google Scholar 

  • Singh, S. K. and Havskov, J., 1980. On moment magnitude scale, Bull. Seism. Soc. Am. 70, 379–383.

    Google Scholar 

  • Thio, H. K. and Kanamori, H., 1995, Moment-tensor inversion for local earthquakes using surface waves recorded at TERRASCOPE, Bull. Seism. Soc. Am. 85, 1021–1038.

    Google Scholar 

  • Udìas, A. and Buforn, E., 1994. Seismotectonics of the Mediterranean region, Advances in Geophysics 36, 121–209.

    Google Scholar 

  • Vanek, J., Zatopek, A., Karnik, V., Kondorskaya, N. V., Riznichenko, Y. V., Savarensky, E. F., Solov'ev, S. L. and Shebalin, N. V., 1962, Standardization of magnitude scales, Bull. Acad. Sci. USSR Geophys. Ser., 108–111.

  • Wyss, M. and Habermann, R. E., 1982. Conversion of m b to M S for estimating the recurrence time of large earthquakes, Bull. Seism. Soc. Am. 72, 1651–1662.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardini, D., Donato, M.d. & Boschi, E. Calibration of magnitude scales for earthquakes of the Mediterranean. Journal of Seismology 1, 161–180 (1997). https://doi.org/10.1023/A:1009722406153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009722406153

Navigation