Skip to main content
Log in

Temporal Constraints: A Survey

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Temporal Constraint Satisfaction is an information technology useful for representing and answering queries about temporal occurrences and temporal relations between them. Information is represented as a Constraint Satisfaction Problem (CSP) where variables denote event times and constraints represent the possible temporal relations between them. The main tasks are two: (i) deciding consistency, and (ii) answering queries about scenarios that satisfy all constraints. This paper overviews results on several classes of Temporal CSPs: qualitative interval, qualitative point, metric point, and some of their combinations. Research has progressed along three lines: (i) identifying tractable subclasses, (ii) developing exact search algorithms, and (iii) developing polynomial-time approximation algorithms. Most available techniques are based on two principles: (i) enforcing local consistency (e.g. path-consistency) and (ii) enhancing naive backtracking search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. J. Allen. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM 26: 832–843.

    Article  Google Scholar 

  2. K. R. Baker, P. C. Fishburn, & F. S. Roberts. (1972). Partial orders of dimension 2. Networks 2:11–28.

    Google Scholar 

  3. A. Belfer & M. Golumbic. (1981). The role of combinatorical sructures in temporal reasoning. Technical report, IBM research report.

  4. A. Belfer & M. Golumbic. (1990). A combinatorical approach to temporal reasoning. In Proc. Information Technology IEEE, pages 774–780.

  5. C. Bessiere, A. Isli, & G. Ligozat. (1996). Global consistency in interval algebra networks: Tractable subclasses. In Proc. ECAI'96, pages 3–7.

  6. K. S. Booth & G. S. Leuker. (1976). Testing for the consecutive ones property, interval graphs, and planarity using pq-tree algorithms. J. Comput. Sys. Sci. 13: 335–379.

    Google Scholar 

  7. A. Bouchet. (1987). Reducing prime graphs and recognizing circle graphs. Combinatorics 7: 243–254.

    Google Scholar 

  8. P. Cheesman & B. Kanefsky. (1991). Where the really hard problems are. In Proc. IJCAI'91, pages 163–169.

  9. T. Cormen, C. Leiserson, & R. Rivest. (1990). Introduction to Algorithms. McGraw Hill.

  10. R. Dechter. (1992). Encyclopedia of Artificial Intelligence, chapter Constraint Networks. John Wiley & Sons Inc., 2nd edition.

  11. R. Dechter, I. Meiri, & J. Pearl. (1991). Temporal constraint networks. Artificial Intelligence 49: 61–95.

    Google Scholar 

  12. T. Drakengren & P. Jonsson. (1996). Maximal tractable subclasse of Allen's interval algebra: Preliminary report. In Proc. AAAI'96, pages 389–394.

  13. T. Drakengren & P. Jonsson. (1997). Towards a complete classification of tractability in Allen's algebra. In Proc. IJCAI'97, pages 389–394.

  14. B. Dushnik & E. W. Miller. (1941). Partially ordered sets. Amer. J. Math 63: 600–610.

    Google Scholar 

  15. C. Freksa. (1992). Temporal reasoning based on semi-intervals. Artificial Intelligence 54: 199–227.

    Google Scholar 

  16. D. R. Fulkerson & O. A. Gross. (1965). Incidence matrices and interval graphs. Pacific J. Math. 15: 835–855.

    Google Scholar 

  17. C. P. Gabor, K. J. Supowit, & W. L. Hsu. (1989). Recognizing circle graphs in polynomial time. J. ACM 36: 435–473.

    Google Scholar 

  18. A. Gerevini & M. Cristani. (1997). On finding a solution in temporal constraint satisfaction problems. In Proc. IJCAI'97, pages 1460–1465.

  19. A. Gerevini & Lenhart Schubert. (1993). Efficient temporal reasoning through timegraphs. In Proc. IJCAI'93, pages 648–654.

  20. A. Gerevini & L. Schubert. (1994). On computing the minimal labels in time point algebra networks. Technical Report 9408–10, Insituto per la Ricerca Scientifica e Tecnologica.

  21. A. Gerevini & L. Schubert. (1995). Efficient algorithms for qualitative reasoning about time. Artificial Intelligence 74(3): 207–248.

    Google Scholar 

  22. M. Ghallab & A. M. Alaoui. (1989). Managing efficiently temporal relations through indexed spanning trees. In Proc. IJCAI'89, pages 1297–1303.

  23. P. C. Gilmore & A. J. Hoffman. (1964). A characterization of comparability graphs and interval graphs. Canadian J. Math 16: 539–548.

    Google Scholar 

  24. M. Golumbic & E. Scheinerman. (1989). Containment graphs, posets and related classes of graphs. Ann. N. Y. Acad. Sci 555: 192–204.

    Google Scholar 

  25. M. Golumbic & R. Shamir. (1992). Algorithms and complexity for reasoning about time. Technical Report 22–91, Rutgers, New Jersey.

    Google Scholar 

  26. R. Haralick & G. Elliot. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence 14: 263–313.

    Google Scholar 

  27. P. Jonsson, T. Drakengren, & C. Backstrom. (1996). Tractable subclasses of the poinot-interval algebra: A complete classification. In Proc. KR'96, pages 352–363. AAAI Press/The MIT Press.

  28. H. Kautz & P. Ladkin. (1991). Integrating metric and qualitative temporal reasoning. In Proc. AAAI'91, pages 241–246.

  29. J. Koomen. (1987). The TIMELOGIC temporal reasoning system. Technical report 231, Univ. of Rochester, Computer Science Dept. (revised March 1989).

  30. N. Korte & R. H. Möhring. (1989). An incremental linear time algorithm for recognizing interval graphs. SIAM J. Comput. 18: 68–81.

    Google Scholar 

  31. M. Koubarakis. (1992). Dense time and temporal constraints with 6D. In Proc. KR'92, pages 24–35.

  32. M. Koubarakis. (1995). From local to global consistency in temporal constraint networks. In Proc. CP'95.

  33. M. Koubarakis. (1996). Tractable disjunctions of linear constraints. In Proc. CP'96, pages 297–397.

  34. P. Ladkin & R. D. Maddux. (1988). The algebra of constraint satisfaction problems and temporal reasoning. Technical report, Krestel Institute.

  35. P. Ladkin & A. Reinefeld. (1992). Effective solution of qualitative interval constraint problems. Artificial Intelligence 57: 105–124.

    Google Scholar 

  36. P. Ladkin & A. Reinefeld. (1993). A symbolic approach to interval constraint problems. In J. Calmet and J. A. Campbell (eds.), Artificial Intelligence and Symbolic Mathematical Computing, volume 737 of LNCS, Springer-Verlag, pages 65–84.

  37. G. Ligozat. (1991). On generalized interval calculi. In Proc. AAAI'91.

  38. G. Ligozat. (1996). A new proof of tractability for ord-horn relations. In Proc. AAAI'96.

  39. I. Meiri. (1996). Combining qualitative and quantitative constraints in temporal reasoning. Artificial Intelligence 87: 343–385.

    Google Scholar 

  40. D. Mitchell, B. Selman, & H. Levesque. (1992). Hard and easy distributions of sat problems. In Proc. AAAI'92.

  41. R. Morris, L. Khatib, & G. Ligozat. (1995). Generating scenarios from specifications of repeating events. In Proc. TIME'95.

  42. I. Navarrette & R. Marin. (1997). Qualitative temporal reasoning with points and durations. In Proc. IJCAI '97, pages 1454–1459.

  43. B. Nebel. (1997). Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-Horn class. CONSTRAINTS 1(3): 175–190.

    Google Scholar 

  44. B. Nebel & H. Bückert. (1995). Reasoning about temporal relations: Amaximal tractable subclass of Allen's interval algebra. Journal of the Association for Computing Machinery (ACM) 42(1): 43–66.

    Google Scholar 

  45. K. Nökel. (1989). Convex relations between time intervals. In J. Retti and K. Leidlmair (eds.), 5 Osterreichische Artificial-Intelligence-Tagung, pages 298–302.

  46. P. Fishburn. (1970). Intransitive indifference with unequal indifference intervals. J. Math. Psych. 7: 144–149.

    Google Scholar 

  47. M. Poesio & R. J. Brachman. (1991). Metric constraints for maintaining appointments: Dates and repeated activities. In Proc. AAAI'91, pages 253–255.

  48. E. Schwalb & R. Dechter. (1993). Coping with disjunctions in temporal constraint satisfaction problems. In Proc. AAAI'93, pages 127–132.

  49. E. Schwalb & R. Dechter. (1995). Processing temporal constraint networks. Artificial Intelligence 93: 29–61. Also available as UCI technical report (1995).

    Google Scholar 

  50. R. E. Tarjan. (1973). Depth-first search and linear graph algorithms. SIAM J. Comput. 1: 146–160.

    Google Scholar 

  51. P. van Beek. (1989). Approximation algorithms for temporal reasonoing. In Proc. IJCAI'89, pages 1291–1296.

  52. P. van Beek. (1990). Exact and Approximate Reasoning about Qualitative Temporal Relations. PhD thesis, Dept. of Computer Science, University of Alberta.

  53. P. van Beek. (1992). Reasoning about qualitative temporal information. Artificial Intelligence 58: 297–326.

    Google Scholar 

  54. P. van Beek & Dennis Manchak. (1996). The design and experimental analysis of algorithms for temporal reasoning. Journal of Artificial Intelligence Research 4: 1–18.

    Google Scholar 

  55. L. Vila & L. Godo. (1995). On fuzzy temporal constraints networks. Mathware and Soft Computing 3(1): 315–334.

    Google Scholar 

  56. M. Vilain. (1982). A system for reasoning about time. In Proc. AAAI'82, pages 197–201.

  57. M. Vilain, H. Kautz, & P. van Beek. (1989). Constraint propagation algorithms for temporal reasoning: A revised report. In Daniel S. Weld and Johan de Kleer (eds.), Readings on Qualitative Reasoning about Physical Systems. Morgan Kauffman, pages 373–381.

  58. C. P. Williams & T. Hogg. (1993). A typicality of phase transition search. Computational Intelligence 9(3): 211–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwalb, E., Vila, L. Temporal Constraints: A Survey. Constraints 3, 129–149 (1998). https://doi.org/10.1023/A:1009717525330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009717525330

Navigation