Skip to main content
Log in

A method to quantify N fertilizer requirement

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

A methodology to quantify N fertilizer requirement for a barley crop is proposed. The method consists of establishing a relationship between barley N demand (DEM) and an index of soil N supply (NS). NS values were obtained adding the inorganic N, i.e, (N-NO- 3 + N-NH+ 4, (Ni), measured just before planting in the soil to an index of soil N mineralization (Nor):

NS = Ni + Nor

Soil organic matter (SOM) was selected as an index of Nor:

Nor = 25.9 + 17.9 (SOM) R2; = 0.89; p < 0.01

and Ni was measured in a soil extract obtained with KCl (1N).

Ns values were related to both grain yield (Y) and N accumulated in the above ground biomass of barley (AB) grown under greenhouse conditions. The following relationships were obtained:

Y = 0.81 + 0.99 (NS) - 0.0002 (NS)2 R2 = 0.77; p < 0.01

AB = -0.006 + 0.002 (NS) - 0.000003 (NS)2 R2 = 0.84; p < 0.01

A graphic relationship was established between DEM and NS, in order to extrapolate the greenhouse results to field conditions. Using this relationship, AB was converted from g N pot-1 to kg N ha-1, and NS from μg g-1 of N in the soil to kg ha-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez SE (1988) Selección demétodos de diagnóstico de nitrógeno aprovechable en el suelo. Tesis deMaestría. Colegio de Postgraduados, Montecillo, México

    Google Scholar 

  • Barber SA (1984) Soil Nutrient Bioavailability. A mechanistic Approach. John Wiley & Sons, Inc., 398 p New York.

    Google Scholar 

  • Bremner JM (1965) Inorganic forms of nitrogen, In: Black CA (ed) Methods of Soil Analysis (Part 2). Agronomy 9, American Society of Agronomy, Madison, Wisconsin pp 1179–1237.

    Google Scholar 

  • Cabrera ML & Kissel DE (1988) Length of incubation time affects the parameter values of the double exponential model of nitrogen mineralization. Soil Sci Soc Am J 52: 1186–1187

    Google Scholar 

  • Campbell CA, Jame YW & Winkleman GE (1984) Mineralization rate constants and their use for estimating nitrogen mineralization in some Canadian prairie soils. Can J Soil Sci 64: 333–343

    Google Scholar 

  • Campbell CA, Ellert BH & Jame YW (1993) Nitrogen mineralization potential in soils. In: Carter MR (ed) Soil Sampling and Methods of Analysis, pp 341–349. Canadian Society of Soil Science. Lewis Publisher

  • Dahnke WC & Johnson GV (1990) Testing soils for available nitrogen. In: Westerman RL (ed) Soil Testing and Plant Analysis. Soil Science Society of America book series no. 3, Madison, WI.

  • Deans JR, Molina JAE & Clapp CE (1986) Models for predicting potentially mineralizable nitrogen and decomposition rate constants. Soil Sci Soc Am J 50: 323–326

    Google Scholar 

  • De Ridder N & van Keulen H (1990) Some aspects of the role of organic matter in sustainable intensified arable farming systems in the West–African semi–arid–tropics (SAT). Fert Res 26: 299–310

    Google Scholar 

  • Galvis SA, Etchevers JD & Rodríguez SJ (1993) Estimación de rendimientos máximos alcanzables en áreas de temporal del estado de Tlaxcala Terra 11: 226–234

    Google Scholar 

  • Greenwood DJ (1978) A theoretical model for the decline in the protein content in plants during growth. J Agric Sci 91: 461–466

    Google Scholar 

  • Godwin DC & Jones CA (1991) Nitrogen dynamics in soil–plant systems. In: Hanks J & Ritchie JT (eds) Modeling Plant and Soil Systems. Agronomy no. 31 pp 287–321. Madison WI

  • Hauser GF (1973) Guide to the calibration of soil tests for fertilizer recommendations. FAO soils. Bulletin 18. FAO, Rome

    Google Scholar 

  • Janssen BH, Guiking FCT, van der Eijk D Smaling EMA, Wolf J & van Reuler H (1990) A system for quantitative evaluation of the fertility of tropical soils (QUEFT). Geoderma 46: 299–318

    Google Scholar 

  • Lövenstein H, Latinga EA, Rabbinge R & van Keulen H (1990) Principles of theoretical Production Ecology. PUDOC, Wageningen.

    Google Scholar 

  • Morris ML, Belaid A & Byerlee D (1991) Wheat and barley production in rainfed marginal environments of the developing world. Part I of 1990–91 CIMMYT World Wheat Facts and Trends: Wheat and Barley Production in Rainfed Marginal Environments of the Developing World. CIMMYT, Mexico, D.F.

    Google Scholar 

  • Rodríguez SJ (1987) Normas de fertilización para maíz y cebada en el estado de Tlaxcala. Informe técnico. Colegio de Postgraduados, Montecillo, Mexico

    Google Scholar 

  • Rodríguez SJ (1993) Fertilización de cultivos. Un método racional. Pontificia Universidad Católica de Chile, Chile

    Google Scholar 

  • Matus F & Rodríguez SJ (1989) Modelo simple para estimar el suministro de N en el suelo. Cienc Invest Agric. 16: 33–46

    Google Scholar 

  • SAS Institute, Inc (1988) SAS User's Guide: Statistic SAS Institute, Inc. Cary, NC

    Google Scholar 

  • Stanford G and Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Sci Soc Am Proc 36: 465–472

    Google Scholar 

  • Stol W, van Keulen H & van Kraalingen DWG (1993) The fortran version of the van Keulen–Seligman CSMP–spring wheat model Simulation report CABO–TT no 30, Centre for Agrobiological Research–CABO–DLO, Wageningen. 112 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvis-Spinola, A., Alvarez-Sánchez, E. & Etchevers B, J.D. A method to quantify N fertilizer requirement. Nutrient Cycling in Agroecosystems 51, 155–162 (1998). https://doi.org/10.1023/A:1009714932119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009714932119

Navigation