Skip to main content
Log in

Myocyte Cell Loss in Ischemic Cardiomyopathy: Role of Apoptosis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Circulation 1990;81:1161–1172.

    Google Scholar 

  2. Anversa P, Sonnenblick EH. Ischemic cardiomyopathy: pathophysiologic mechanisms. Prog Cardiovasc Dis 1990; 33:49–70.

    Google Scholar 

  3. Anversa P, Olivetti G, Meggs LG, Sonnenblick EH, Capasso JM. Cardiac anatomy and ventricular loading after myocardial infarction. Circulation 1993;87:VII22–VII27.

    Google Scholar 

  4. Anversa P, Beghi C, Kikkawa Y, Olivetti G. Myocardial infarction in rats: infarct size, myocyte hypertrophy and capillary growth. Circ Res 1986;58:26–37.

    Google Scholar 

  5. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell death are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86–107.

    Google Scholar 

  6. Fishbein MC, Maclean D, Maroko PR. Experimental myocardial infarction in the rat. Qualitative and quantitative changes during pathologic evolution. Am J Pathol 1978; 90:57–70.

    Google Scholar 

  7. Weisman HF, Bush DE, Mannisi JA, Weisfeldt ML, Healy B. Cellular mechanisms of myocardial infarct expansion. Circulation 1988;78:186–201.

    Google Scholar 

  8. Anversa P, Capasso JM, Puntillo E, Sonnenblick EH, Olivetti G. Structural Mechanisms of the Myocardial Response to Infarction. Gustav FischerVerlag Jena, 1990, pp. 36–50.

  9. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P. Sideto-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 1990;67:23–34.

    Google Scholar 

  10. Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 1991;68:856–869.

    Google Scholar 

  11. DeFelice A, Frering R, Horan P. Time course of hemodynamic changes in rats with healed severe myocardial infarction. Am J Physiol 1989;257:H289–H296.

    Google Scholar 

  12. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 1991;260:H1406–H1414.

    Google Scholar 

  13. Caulfield JB, Leinbach R, Gold H. The relationship of myocardial infarct size and prognosis. Circulation 1976;53(Suppl I):141–145.

    Google Scholar 

  14. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994;75: 426–433.

    Google Scholar 

  15. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P. Stretch-induced programmed myocyte cell death. J Clin Invest 1995;96: 2247–2259.

    Google Scholar 

  16. Long X, Boluyt MO, Hipolito M, Lundberg MS, Zheng J-S, O'Neill L, Cirielli C, Lakatta EG, Crow MT. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 1997;99:2635–2643.

    Google Scholar 

  17. Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macro-molecular synthesis. J Pathol 1984;142:67–77.

    Google Scholar 

  18. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry 1992;13:795–808.

    Google Scholar 

  19. Arrends MJ, Morris RG, Wyllie AH. Apoptosis: the role of endonuclease. Am J Pathol 1990;136:593–608.

    Google Scholar 

  20. Anversa P, Olivetti G, Leri A, Liu Y, Kajstura J. Myocyte cell death and ventricular remodeling. Curr Opin Nephrol Hypertens 1997;6:169–176.

    Google Scholar 

  21. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F. Cytometry in cell necrobiology. Analysis of apoptosis, accidental cell death and necrosis. Cytometry 1997;27:1–20.

    Google Scholar 

  22. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–1141.

    Google Scholar 

  23. Didenko VV, Hornsby PJ. Presence of double-strand breaks with single-base 39 overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol 1996;135:1369–1376.

    Google Scholar 

  24. Cigola E, Kajstura J, Li B, Meggs LG, Anversa P. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res 1997;231:363–371.

    Google Scholar 

  25. Gold R, Schmied M, Giegerich G, Breitschopf H, Hartung HP, Toyka KV, Lassmann H. Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest 1994;71:219–225.

    Google Scholar 

  26. Nolan AC, Clark WA, Karwoski T, Zak R. Patterns of cellular injury in myocardial ischemia determined by monoclonal antimyosin. Proc Natl Acad Sci USA 1983;80:6046–6050.

    Google Scholar 

  27. Benjamin I, Jalil J, Tan L, Cho K, Weber K, Clark W. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res 1989;67:657–670.

    Google Scholar 

  28. Gerschenson LE, Rotello RJ. Apoptosis: a different type of cell death. FASEB J 1992;6:2450–2455.

    Google Scholar 

  29. Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara J, Chapnick S, Reiss K, Olivetti G, Anversa P. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 1996;271:H1215–H1228.

    Google Scholar 

  30. Page E, Polimeni PI. Ultrastructural changes in the ischemic zone bordering experimental infarcts in rat left ventricles. Am J Pathol 1977;87:81–104.

    Google Scholar 

  31. Hu H, Sachs F. Stretch-activated ion channels in the heart. J Mol Cell Cardiol 1997;29:1511–1523.

    Google Scholar 

  32. Page E, Upshaw-Early J, Goings GE, Hanck DA. Effect of external Ca2+ concentration on stretch augmented natriuretic peptide secretion by rat atria. Am J Physiol 1991;260:C756–C762.

    Google Scholar 

  33. Jiao JH, Baertschi AJ. Synergistic regulation of ANF in isolated rat hearts. Am J Physiol 1995;268:H1405–H1411.

    Google Scholar 

  34. Wu C-F, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997;272:14860–14866.

    Google Scholar 

  35. Sadoshima J, Xu J, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–984.

    Google Scholar 

  36. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997;29: 859–870.

    Google Scholar 

  37. Clerk A, Bogoyevitch MA, Fuller SJ, Lazou A, Parker PJ, Sugden PH. Expression of protein kinase C isoforms during cardiac ventricular development. Am J Physiol 1995;269: H1087–H1097.

    Google Scholar 

  38. Peiper GM, Todd GL, Wu ST, Salhany JM, Clayton FC, Eliot RS. Attenuation of myocardial acidosis by propranolol during ischaemic arrest and reperfusion: evidence with 31P nuclear magnetic resonance. Cardiovasc Res 1980;14:646–653.

    Google Scholar 

  39. Natel S, Elharrar V, Zipes DP, Bailey JC. pH dependent electrophysiological effects of quinidine and lidocaine on canine cardiac Purkinje fibers. Circ Res 1981;48:55–61.

    Google Scholar 

  40. Kinglsey PB, Sako EY, Yang MQ, Zimer SD, Ugurbil K, Foker JE, From AHL. Ischemic contracture begins when anaerobic glycolysis stops: a 31P-NMR study of isolated rat hearts. Am J Physiol 1991;261:H469–H478.

    Google Scholar 

  41. Yan GX, Kleber AG. Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ Res 1992;71:460–470.

    Google Scholar 

  42. Ramsey J, Austin C, Wray S. Differential effects of external pH alteration on intracellular pH in rat coronary and cardiac myocytes. Pflugers Arch 1994;428:674–676.

    Google Scholar 

  43. Wang X, Levi AJ, Halestrap AP. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi. Am J Physiol 1994;267:H1759–H1769.

    Google Scholar 

  44. Gevers W. Generation of protons by metabolic processes in heart cells. J Mol Cell Cardiol 1977;9:867–874.

    Google Scholar 

  45. Seeley RN. Proton generation and control during anaerobic glycolysis in heart cells. J Mol Cell Cardiol 1980;12: 1483–1486.

    Google Scholar 

  46. Gettes LS. Effect of Ischemia on Cardiac Electrophysiology. New York: Raven Press, 1986, pp. 1317–1341.

    Google Scholar 

  47. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 1978;92:187–214.

    Google Scholar 

  48. Reimer KA, Hill ML, Jennings RB. Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 1981;13: 229–239.

    Google Scholar 

  49. Gilmour RF, Evans JJ, Zipes DP. Purkinje-muscle coupling and endocardial response to hyperkalemia, hypoxia, and acidosis. Am J Physiol 1984;246:H303–H311.

    Google Scholar 

  50. Williamson JR. Glycolytic control mechanisms. II. Kinetics of intermediate changes during the aerobic anoxic transition in the perfused rat heart. J Biol Chem 1966;241:5026–5036.

    Google Scholar 

  51. Case RB, Felix A, Castellana FS. Rate of rise of myocardial Pco2 during early myocardial ischemia in the dog. Circ Res 1979;45:324–330.

    Google Scholar 

  52. Ammann D, Lanter F, Steiner RA, Schulthess P, Shijo Y, Simon W. Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies. Anal Chem 1981;53:2267–2269.

    Google Scholar 

  53. Cascio WE, Yan G-X, Kleber AG. Early changes in extracellular potassium in ischemic rabbit myocardium: the role of extracellular carbon dioxide accumulation and diffusion. Circ Res 1992;70:409–422.

    Google Scholar 

  54. Janse MJ, Cinca J, Morena H, Fiolet JWT, Kleber AG, de Vries GP, Becker AE, Durrer D. The border zone in myocardial ischemia: an electrophysiological, metabolic and histo-chemical correlation in the pig heart. Circ Res 1979;44: 576–588.

    Google Scholar 

  55. Hearse DJ, Opie LH, Katzeff IE, Lubbe WF, van der Werff TJ, Peisach M, Boulle G. Characterization of the “border zone” in acute regional ischemia in the dog. Am J Cardiol 1977;40:716–726.

    Google Scholar 

  56. Watson RM, Markle DR, Ro YM, Goldstein SR, McGuire DA, Peterson JI, Patterson RE. Transmural pH gradient in canine myocardial ischemia. Am J Physiol 1984;246: H232–H238.

    Google Scholar 

  57. Hirzel HO, Sonnenblick EH, Kirk ES. Absence of a lateral border zone of intermediate creatine phosphokinase depletion surrounding a central infarct 24 hours after acute coronary occlusion in the dog. Circ Res 1977;41:673–683.

    Google Scholar 

  58. Koizumi T. Deoxyribonuclease II (DNase II) activity in mouse tissue and body fluids. Jikken Dobutsu 1995;44: 169–171.

    Google Scholar 

  59. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994;124:1–6.

    Google Scholar 

  60. Baffy G, Miyashita T, Williamson JR, Reed JC. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced bcl-2 oncoprotein production. J Biol Chem 1993;268: 6511–6519.

    Google Scholar 

  61. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW. Evidence that bcl-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci USA 1994;91:6569–6573.

    Google Scholar 

  62. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2 deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys and hypopigmented hair. Cell 1993;75: 229–240.

    Google Scholar 

  63. Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC, Quaini F, Sonnenblick EH, Anversa P. Programmed cell death and the expression of the photooncogene Bcl-2 in myocyte during postnatal maturation of the heart. Exp Cell Res 1995;219:110–121.

    Google Scholar 

  64. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996;226:316–327.

    Google Scholar 

  65. Kane DJ, Sarafian TA, Anton R, Hahn H, Butler Grall E, Selverston Valentine J, Oerd T, Bredesen DE. Bcl-2 inhibition of neural death: decreased generation of reative oxygen species. Science 1993;262:1274–1277.

    Google Scholar 

  66. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993;75:241–251.

    Google Scholar 

  67. Krajewski S, Tanaka S, Takayama S, Schibler M, Fenton W, Reed J. Investigations of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993;53:4701–4714.

    Google Scholar 

  68. Zamzami N, Susin A, Marchetti P, Hirsh T, Gomez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med 1996;183:1533–1544.

    Google Scholar 

  69. Wang H-G, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996;87:629–638.

    Google Scholar 

  70. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerized in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 1993;73:609–619.

    Google Scholar 

  71. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994;79:189–192.

    Google Scholar 

  72. Hanada M, Aime-Sempe C, Sato T, Reed JC. Structure –function analysis of Bcl-2 protein: identification of conserved domains important for homodimerization with Bcl-2 and hetero-dimerization with Bax. J Biol Chem 1995; 270:11962–11969.

    Google Scholar 

  73. Zha HB, Aime-Sempe C, Sato T, Reed JC. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 1996;271:7440–7444.

    Google Scholar 

  74. Haldar S, Jena N, Croce CM. Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 1995;92:4507–4511.

    Google Scholar 

  75. Chen C-Y, Faller DV. Phosphorylation of Bcl-2 protein and association with p21Ras in Ras-induced apoptosis. J Biol Chem 1996;271:2376–2379.

    Google Scholar 

  76. Bardales RH, Hailey S, Xie SS, Schaefer RF, Hus S-M. In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol 1996;149:821–829.

    Google Scholar 

  77. Anversa P, Kajstura J, Olivetti G. Myocyte death in heart failure. Curr Opin Cardiol 1996;11:245–251.

    Google Scholar 

  78. Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996;28:2005–2016.

    Google Scholar 

  79. Li P, Park C, Micheletti R, Li B, Cheng W, Sonnenblick EH, Anversa P, Bianchi G. Myocyte performance during evolution of myocardial infarction in rats: effects of propionyl-Lcarnitine. Am J Physiol 1995;268:H1702–H1713.

    Google Scholar 

  80. Chong CY, Gibbons EF, Hogan RD, Franklin TD, Nolting M, Mann DL, Weyman AE. Relationship of functional recovery to scar contraction after myocardial infarction in the canine left ventricle. Am Heart J 1989;117:819–829.

    Google Scholar 

  81. Gottlieb RA, Burleson KO, Kloner RA, Bablor BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–1628.

    Google Scholar 

  82. Gottlieb RA, Gruol DL, Zhu JY, Engler RL. Preconditioning in rabbit cardiomyocytes. Role of pH vacuolar proton ATPase, and apoptosis. J Clin Invest 1996;97:2391–2398.

    Google Scholar 

  83. Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 1996;148:141–149.

    Google Scholar 

  84. Bursch W, Oberhammer F, Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol Sci 1992;13:245–251.

    Google Scholar 

  85. Resnicoff M, Abraham D, Yutanawiboonchai W, Rotman HL, Kajstura J, Rubin R, Zoltick P, Baserga R. The insulin-like growth factor-1 receptor protects tumor cells from apoptosis in vivo. Cancer Res 1995;55:2463–2469.

    Google Scholar 

  86. Colucci WS. Apoptosis in the heart. N Engl J Med 1996;335:1224–1226.

    Google Scholar 

  87. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw B-A. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335:1182–1189.

    Google Scholar 

  88. Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine G. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 1996;335:1190–1196.

    Google Scholar 

  89. Dostal DE, Rothblum KN, Chernin MI, Cooper GR, Baker KM. Intracardiac detection of angiotensinogen and renin: a localized renin–angiotensin system in neonatal rat heart. Am J Physiol 1992;263:C838–C850.

    Google Scholar 

  90. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiacmyocytes and hyperplasia of cardiac fibroblasts: a critical role of the AT1 receptor subtype. Circ Res 1993;73:413–423.

    Google Scholar 

  91. Sadoshima J, Izumo S. Signal transduction pathways of angiotensin II induced c-fos gene expression in cardiac myocytes in vitro: roles of phospholipid-derived second messengers. Circ Res 1993;73:424–438.

    Google Scholar 

  92. Sadoshima J, Qiu Z, Morgan JP, Izumo S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes: the critical role of Ca2+-dependent signaling. Circ Res 1995; 76:1–15.

    Google Scholar 

  93. Booz GW, Baker KM. Molecular signaling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 1995;30:537–543.

    Google Scholar 

  94. Zhang X, Dostal DE, Reiss K, Cheng W, Kajstura J, Li P, Huang H, Sonnenblick EH, Meggs LG, Baker KM, Anversa P. Identification and activation of autocrine renin–angiotensin system in adult ventricular myocytes. Am J Physiol 1995;269:H1791–H1802.

    Google Scholar 

  95. Li Z, Bing OHL, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition from hypertrophy to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272:H2313–H2319.

    Google Scholar 

  96. Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell 1992;70:523–526.

    Google Scholar 

  97. Miyashita Y, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80:293–299.

    Google Scholar 

  98. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 1994;54:3131–3135.

    Google Scholar 

  99. Pierzchalski P, Reiss K, Cheng W, Cirielli C, Kajstura J, Nitahara JA, Rizk M, Capogrossi MC, Anversa P. p53 induces myocyte apoptosis via the activation of the renin–angiotensin system. Exp Cell Res 1997;234:57–65.

    Google Scholar 

  100. Kim KK, Soonpaa MH, Daud AI, Koh GY, Kim JS, Field LJ. Tumor suppressor gene expression during normal and pathologic myocardial growth. J Biol Chem 1994;269: 22607–22613.

    Google Scholar 

  101. Svedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction: results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 1992;327:678–684.

    Google Scholar 

  102. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Study Group. N Engl J Med 1987;316:1429–1435.

    Google Scholar 

  103. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327:685–691.

    Google Scholar 

  104. Warnes CA, Roberts WC. Sudden coronary death: relation of amount and distribution of coronary narrowing at necropsy to previous symptoms of myocardial ischemia, left ventricular scarring and heart weight. Am J Cardiol 1984;54:65–73.

    Google Scholar 

  105. Buja LM, Willerson JT. The role of coronary artery lesions in ischemic heart disease: insight from recent clinico-pathologic, coronary arteriographic, and experimental studies. Hum Pathol 1987;18:451–461.

    Google Scholar 

  106. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994;89:151–163.

    Google Scholar 

  107. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen remodeling of the pressure overloaded, hypertrophied nonhuman primate myocardium. Circ Res 1988; 62:757–765.

    Google Scholar 

  108. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium: fibrosis and renin–angiotensin–aldosterone system. Circulation 1991;83:1849–1865.

    Google Scholar 

  109. Anversa P, Olivetti G, Li P, Herman M, Capasso JM. Myocardial infarction, cardiac anatomy and ventricular loading. Cardioscience 1993;4:55–62.

    Google Scholar 

  110. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart: myocyte loss and reactive cellular hypertrophy. Circ Res 1991;68: 1560–1568.

    Google Scholar 

  111. Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, Anversa P. Gender differences and aging: effects on the human heart. J Am Coll Cardiol 1995; 26:1068–1079.

    Google Scholar 

  112. Olivetti G, Ricci R, Anversa P. Hyperplasia of myocyte nu-clei in long-term cardiac hypertrophy in rats. J Clin Invest 1987;80:1818–1822.

    Google Scholar 

  113. Olivetti G, Ricci R, Lagrasta C, Maniga E, Sonnenblick EH, Anversa P. The cellular basis of wall remodeling in long term pressure overload induced right ventricular hypertrophy in rats. Circ Res 1988;63:648–657.

    Google Scholar 

  114. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Capasso JM. Hypertensive cardiomyopathy: myocyte nuclei hyperplasia in the mammalian heart. J Clin Invest 1990;85: 994–997.

    Google Scholar 

  115. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 1990;67:871–885.

    Google Scholar 

  116. Reiss K, Kajstura J, Capasso JM, Marino TA, Anversa P. Impairment of myocyte contractility following coronary artery narrowing is associated with activation of the myocyte IGF1 autocrine system, enhanced expression of late growth related genes, DNA-synthesis and myocyte nuclear mitotic division in rats. Exp Cell Res 1993;207:348–360.

    Google Scholar 

  117. Reiss K, Meggs LG, Li P, Olivetti G, Capasso JM, Anversa P. Upregulation of IGF1, IGF1-receptor and late growth related genes in ventricular myocytes acutely after infarction in rats. J Cell Physiol 1994;158:160–168.

    Google Scholar 

  118. Reiss K, Kajstura J, Zhang X, Li P, Szoke E, Olivetti G, Anversa P. Acute myocardial infarction leads to upregulation of the IGF-1 autocrine system, DNA replication, and nuclear mitotic division in the remaining viable cardiac myocytes. Exp Cell Res 1994;213:463–472.

    Google Scholar 

  119. Kajstura J, Zhang X, Reiss K, Szoke E, Li P, Lagrasta C, Cheng W, Darzynkiewicz Z, Olivetti G, Anversa P. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats. Circ Res 1994;74:383–400.

    Google Scholar 

  120. Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol 1960;5:370–382.

    Google Scholar 

  121. Astorri E, Chizzola A, Visioli O, Anversa P, Olivetti G, Vitali-Mazza L. Right ventricular hypertrophy: a cytometric study on 55 human hearts. J Mol Cell Cardiol 1971;2:99–110.

    Google Scholar 

  122. Astorri E, Bolognesi R, Colla B, Chizzola A, Visioli O. Left ventricular hypertrophy: a cytometric study on 42 human hearts. J Mol Cell Cardiol 1977;9:763–775.

    Google Scholar 

  123. Grajek S, Lesiak M, Pyda M, Zajac M, Paradowski S, Kaczmarek E. Hypertrophy or hyperplasia in cardiac muscle: postmortem human morphometric study. Eur Heart J 1993;14:40–47.

    Google Scholar 

  124. Olivetti G, Melissari M, Balbi T, Quaini F, Sonnenblick EH, Anversa P. Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. J Am Coll Cardiol 1994;24:140–149.

    Google Scholar 

  125. Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 1996;28:1463–1477.

    Google Scholar 

  126. Arbustini E, Diegoli M, Grasso M, Fasani R, D'Armini A, Martinelli L, Goggi C, Campana C, Gavazzi A, Vigano M. Expression of proliferating cell markers in normal and diseased human hearts. Am J Cardiol 1993;72:608–614.

    Google Scholar 

  127. Quaini F, Cigola E, Lagrasta C, Saccani G, Quaini E, Rossi C, Olivetti G, Anversa P. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res 1994;75:1050–1063.

    Google Scholar 

  128. Bravo R, Frank R, Blundell PA, MacDonald-Bravo H. Cyclin/ PCNA is the auxiliary protein of DNA polymerase delta. Nature 1987;326:515–517.

    Google Scholar 

  129. Jaskulski D, DeRiel JK, Mercer WE, Calabretta B, Baserga R. Inhibition of cellular proliferation by antisense oligode-oxynucleotides to PCNA cyclin. Science 1988;240:1544–1546.

    Google Scholar 

  130. Beltrami CA, Di Loreto C, Finato N, Rocco M, Artico D, Cigola E, Gambert SR, Olivetti G, Kajstura J, Anversa P. Proliferating cell nuclear antigen (PCNA), DNA synthesis and mitosis in myocytes following cardiac transplantation in man. J Mol Cell Cardiol 1997;29:2789–2802.

    Google Scholar 

  131. Reiss K, Cheng W, Ferber A, Kajstura J, Li P, Li B, Olivetti G, Homcy CJ, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci USA 1996;93:8630–8635.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anversa, P., Leri, A., Malhotra, A. et al. Myocyte Cell Loss in Ischemic Cardiomyopathy: Role of Apoptosis. Heart Fail Rev 3, 63–78 (1998). https://doi.org/10.1023/A:1009706614557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009706614557

Keywords

Navigation