Skip to main content
Log in

Role of Angiotensin II in Fibrous Tissue Formation Following Myocardial Infarction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Traditional views of circulating angiotensin (Ang) II have focused on its endocrine properties in classical target tissues (e.g., kidneys and vasculature), where resident cell populations express Ang II receptors. More recent evidence supports its role in nonclassical tissues (e.g., adipose and connective tissues). Moreover, de novo generation of Ang peptides by cellular constituents of these nonclassical tissues has drawn attention to autocrine and paracrine properties of Ang II mediated by AT1 receptor-ligand binding at these sites. Fibrous tissue formation, regulated by phenotypically transformed fibroblast-like cells termed myofibroblasts, represent such nonclassical tissue and cells. Herein we address a role for local Ang II in tissue repair following myocardial infarction. The article further draws attention to the importance of chronic elevations in circulating Ang II, associated with activation of the renin– angiotensin–aldosterone system, that promote unwanted cardiac fibrosis. Genetic risk for adverse cardiovascular structural remodeling and thereby such events as myocardial infarction, stroke, and hypertension may be related to iterations in genes encoding angiotensin-converting enzyme and angiotensinogen. Potentials for gene therapy that could prevent fibrosis and thereby be cardioprotective are also briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber KT. Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 1997;96:4065-4082.

    Google Scholar 

  2. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994;89:151-163.

    Google Scholar 

  3. Weber KT. Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin Nephrol 1997;17: 467-491.

    Google Scholar 

  4. Cleutjens JPM, Verluyten MJA, Smits JFM, Daemen MJAP. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 1995;147:325-338.

    Google Scholar 

  5. Jugdutt BI, Amy RWM. Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 1986;7:91-102.

    Google Scholar 

  6. McCormick RJ, Musch TI, Bergman BC, Thomas DP. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol 1994;266:H354-H359.

    Google Scholar 

  7. Soden M, Klett C, Hasmann T, Hackenthal E. Angiotensinogen: an acute-phase protein? Hypertension 1994;23(Suppl I):I126-II30.

    Google Scholar 

  8. Frederich RC Jr, Kahn BB, Peach MJ, Flier JS. Tissue-specific nutritional regulation of angiotensinogen in adipose tissue. Hypertension 1992;19:339-344.

    Google Scholar 

  9. Jones BH, Standridge MK, Moustaid N. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 1997;138:1512-1519.

    Google Scholar 

  10. Jones BH, Standridge MK, Taylor JW, Moustaïd N. Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control. Am J Physiol 1997;273:R236-R242.

    Google Scholar 

  11. Katwa LC, Ratajska A, Cleutjens JPM, Sun Y, Zhou G, Lee SJ, Weber KT. Angiotensin converting enzyme and kininase-II-like activities in cultured valvular interstitial cells of the rat heart. Cardiovasc Res 1995;29:57-64.

    Google Scholar 

  12. Katwa LC, Tyagi SC, Campbell SE, Lee SJ, Cicila GT, Weber KT. Valvular interstitial cells express angiotensinogen, cathepsin D, and generate angiotensin peptides. Int J Biochem Cell Biol 1996;28:807-821.

    Google Scholar 

  13. Katwa LC, Campbell SE, Tyagi SC, Lee SJ, Cicila GT, Weber KT. Cultured myofibroblasts generate angiotensin peptides de novo. J Mol Cell Cardiol 1997;29:1375-1386.

    Google Scholar 

  14. Lindpaintner K, Lu W, Niedermajer J, Schieffer B, Just H, Ganten D, Drexler H. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 1993;25:133-143.

    Google Scholar 

  15. Studer R, Reinecke H, Müller B, Holtz J, Just H, Drexler H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest 1994;94:301- 310.

    Google Scholar 

  16. Hokimoto S, Yasue H, Fujimoto K, Sakata R, Miyamoto E. Increased angiotensin converting enzyme activity in left ventricular aneurysm of patients after myocardial infarction. Cardiovasc Res 1995;29:664-669.

    Google Scholar 

  17. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 1991;69:475- 482.

    Google Scholar 

  18. Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. JMol Cell Cardiol 1993;25:1369-1380.

    Google Scholar 

  19. Passier RCJJ, Smits JFM, Verluyten MJA, Studer R, Drexler H, Daemen MJAP. Activation of angiotensin-converting enzyme expression in infarct zone following myocardial infarction. Am J Physiol 1995;269:H1268-H1276.

    Google Scholar 

  20. Zhang X, Dostal DE, Reiss K, Cheng W, Kajstura J, Li P, Huang H, Sonnenblick EH, Meggs LG, Baker LM, Anversa P. Identification and activation of autocrine renin-angiotensin system in adult ventricular myocytes. Am J Physiol 1995;269:H1791-H1802.

    Google Scholar 

  21. Sun Y, Cleutjens JPM, Diaz-Arias AA, Weber KT. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 1994;28:1423-1432.

    Google Scholar 

  22. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO. Localization of angiotensin converting enzyme in rat heart. Circ Res 1991;68:141-149.

    Google Scholar 

  23. Sun Y, Ratajska A, Zhou G, Weber KT. Angiotensin converting enzyme and myocardial fibrosis in the rat receiving angiotensin II or aldosterone. J Lab Clin Med 1993;122:395-403.

    Google Scholar 

  24. Ou R, Sun Y, Ganjam VK, Weber KT. In situ production of angiotensin II by fibrosed rat pericardium. J Mol Cell Cardiol 1996;28:1319-1327.

    Google Scholar 

  25. Lenz O, Schmid B, Kilter H, La Rosee K, Flesch M, Kuhn-Regnier F, Sudkamp M, Bohm M. Effects of angiotensin II and angiotensin-converting enzyme inhibitors on human myocardium. Eur J Pharmacol 1995;294:17-27.

    Google Scholar 

  26. Nozawa Y, Miyake H, Haruno A, Yamada S, Uchida S, Ohkura T, Kimura R, Suzuki H, Hoshino T. Down-regulation of angiotensin II receptors in hypertrophied human myocardium. Clin Exp Pharmacol Physiol 1996;23:514-518.

    Google Scholar 

  27. Regitz-Zagrosek V, Friedel N, Heymann A, Bauer P, Neub M, Rolfs A, Steffan C, Hildebrandt A, Hetzer R, Fleck E. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation 1995;91:1461-1471.

    Google Scholar 

  28. Crabos M, Roth M, Hahn AWA, Erne P. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. J Clin Invest 1994;93:2372-2378.

    Google Scholar 

  29. Dostal DE, Booz GW, Baker KM. Angiotensin II signalling pathways in cardiac fibroblasts: conventional versus novel mechanisms in mediating cardiac growth and function. Mol Cell Biochem 1996;157:15-21.

    Google Scholar 

  30. Clauser E, Curnow KM, Davies E, Conchon S, Teutsch B, Vianello B, Monnot C, Corvol P. Angiotensin II receptors: protein and gene structures, expression and potential pathological involvements. Eur J Endocrinol 1996;134:403-411.

    Google Scholar 

  31. Rakugi H, Okamura A, Kamide K, Ohishi M, Sasamura H, Morishita R, Higaki J, Ogihara T. Recognition of tissue-and subtype-specific modulation of angiotensin II receptors using antibodies against AT1 and AT2 receptors. Hypertens Res 1997;20:51-55.

    Google Scholar 

  32. Sun Y, Weber KT. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 1994;28: 1623-1628.

    Google Scholar 

  33. Lefroy DC, Wharton J, Crake T, Knock GA, Rutherford RAD, Suzuki T, Morgan K, Polak JM, Poole-Wilson PA. Regional changes in angiotensin II receptor density after experimental myocardial infarction. J Mol Cell Cardiol 1996;28:429-440.

    Google Scholar 

  34. Desmoulière A, Gabbiani G. The role of the myofibroblast in wound healing and fibrocontractive diseases. In Clark RAF (ed), The Molecular and Cellular Biology of Wound Repair, 2nd ed. New York: Plenum Press, 1996:391-423.

    Google Scholar 

  35. Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 1994;26: 809-820.

    Google Scholar 

  36. Campbell SE, Katwa LC. Angiotensin II stimulated expression of transforming growth factor-b1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 1997;29:1947-1958.

    Google Scholar 

  37. Sun Y, Ramires FJA, Zhou G, Ganjam VK, Weber KT. Fibrous tissue and angiotensin II. J Mol Cell Cardiol 1997;29: 2001-2012.

    Google Scholar 

  38. Keeley FW, Elmoselhi A, Leenen FHH. Enalapril suppresses normal accumulation of elastin and collagen in cardiovascular tissues of growing rats. Am J Physiol 1992;262: H1013-H1021.

    Google Scholar 

  39. Willems IEMG, Havenith MG, Smits JFM, Daemen MJAP. Structural alterations in heart valves during left ventricular pressure overload in the rat. Lab Invest 1994;71:127-133.

    Google Scholar 

  40. Konishi H, Kuroda S, Inada Y, Fujisawa Y. Novel subtype of human angiotensin II type 1 receptor: cDNA cloning and expression. Biochem Biophys ResCommun 1994;199:467-474.

    Google Scholar 

  41. Lu D, Yu K, Raizada MK. Retrovirus-mediated transfer of an angiotensin type I receptor (AT1-R) antisense sequence decreases AT1-Rs and angiotensin II action in astroglial and neuronal cells in primary cultures from the brain. Proc Natl Acad Sci U S A 1995;92:1162-1166.

    Google Scholar 

  42. Iyer SH, Lu D, Katovich MJ, Raizada MK. Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense. Proc Natl Acad Sci U S A 1996;93:9960-9965.

    Google Scholar 

  43. Gyurko R, Tran D, Phillips MI. Time course inhibition of hypertension by antisense oligonucleotides targeted to AT1 angiotensin receptor mRNA in spontaneously hypertensive rats. Am J Hypertens 1997;10:56S-62S.

    Google Scholar 

  44. Phillips MI, Mohuczy-Dominiak D, Coffey M, Galli SM, Kimura B, Wu P, Zelles T. Prolonged reduction of high blood pressure with an in vivo, nonpathogenic, adeno-associated viral vector delivery of AT1-R mRNA antisense. Hypertension 1997;29:374-380.

    Google Scholar 

  45. Herzig TC, Jobe SM, Aoki H, Molkentin JD, Cowley AW Jr, Izumo S, Markham BE. Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc Natl Acad Sci U S A 1997;94:7543-7548.

    Google Scholar 

  46. Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A, Maeda K, Sawa Y, Kaneda Y, Higaki J, Ogihara T. In vivo transfection of cis element “decoy” against nuclear factor-kappaB binding site prevents myocardial infarction. Nat Med 1997;3:894-899.

    Google Scholar 

  47. Sakolov BP, Ala-Kokko L, Dhulipala R, Arita M, Khillan JS, Prockop DJ. Tissue-specific expression of the gene for type I collagen (COL1A1) in transgenic mice. Only 476 base pairs of the promoter are required if collagen genes are used as reporters. J Biol Chem 1995;270:9622-9629.

    Google Scholar 

  48. Goldberg H, Helaakoski T, Garrett LA, Karsenty G, Pellegrine A, Lozano G, Maity S, de Crombrugghe B. Tissue-specific expression of the mouse a2 (I) collagen promoter. Studies in transgenic mice and in tissue culture cells. J Biol Chem 1992;267:19622-19630.

    Google Scholar 

  49. Guntaka RV, Kovacs A, Kandala JC, Weber KT. Regulation of fibrillar collagen gene expression. In Weber KT (ed), Wound Healing in Cardiovascular Disease. Armonk, NY: Futura, 1995:281-294.

    Google Scholar 

  50. Karsenty G, Park RW. Regulation of type I collagen genes expression. Int Rev Immunol 1995;12:177-185.

    Google Scholar 

  51. Kovacs A, Kandala JC, Weber KT, Guntaka RV. Triple helix-forming oligonucleotide corresponding to the polypyrimidine sequence in the rat a1(I) collagen promoter specifically inhibits factor binding and transcription. J Biol Chem 1996;2 71:1805-1812.

    Google Scholar 

  52. Dhalla AK, Kandala JC, Weber KT, Guntaka RV. Identification of negative and positive regulatory elements in the rat a1(I) collagen gene promoter. Int J Biochem Cell Biol 1997; 29:143-151.

    Google Scholar 

  53. Coustry F, Maity SN, Sinha S, de Crombrugghe B. The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit. J Biol Chem 1996;271:14485-14491.

    Google Scholar 

  54. Laptev AV, Lu Z, Colige A, Prockop DJ. Specific inhibition of expression of a human collagen gene (COL1A1) with modified antisense oligonucleotides. The most effective target sites are clustered in double-stranded regions of the predicted secondary structure for the mRNA. Biochemistry 1994;33:11033-11039.

    Google Scholar 

  55. Suzuki J, Isobe M, Morishita R, Aoki M, Horie S, Okubo Y, Kaneda Y, Sawa Y, Matasuda H, Ogihara T, Sekiguchi M. Prevention of graft coronary arteriosclerosis by antisense cdk2 kinase oligonucleotide. Nat Med 1997;3:900-903.

    Google Scholar 

  56. Joseph J, Kandala JC, Veerapanane D, Weber KT, Guntaka RV. Antiparallel polypurine phosphorothioate oligonucleotides form stable triplexes with the rat a1(I) collagen gene promoter and inhibit transcription in cultured rat fibroblasts. Nucleic Acids Res 1997;25:2182-2188.

    Google Scholar 

  57. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression of recombinant gene in myocardium in vivo after direct injection of DNA. Circulation 1990;82:2217-2221.

    Google Scholar 

  58. Dzau VJ, von der Leyen HE, Morishita R. The concept and potentials of cardiovascular gene therapy. Dialogues Cardiovasc Med 1997;2:3-17.

    Google Scholar 

  59. Marber MS, Wright MJ. What are the prospects for gene therapy in coronary artery disease? Dialogues Cardiovasc Med 1997;22:33-36.

    Google Scholar 

  60. Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest 1996;98:2209-2217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, K.T., Sun, Y., Dhalla, A.K. et al. Role of Angiotensin II in Fibrous Tissue Formation Following Myocardial Infarction. Heart Fail Rev 3, 183–192 (1999). https://doi.org/10.1023/A:1009705432231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009705432231

Navigation