Plant Ecology

, Volume 136, Issue 1, pp 95–103 | Cite as

Influence of heat on seed germination of seven Mediterranean Leguminosae species

  • José M. Herranz
  • Pablo Ferrandis
  • Juan J. Martínez-Sánchez
Article

Abstract

The influence of high temperatures (dry heat and hot water) on germination of seven Mediterranean Leguminosae species typical of fire-prone ecosystems in southern Spain is analyzed, in order to know the response of seeds to wildfires and the possible implications in their regeneration after this disturbance. Seeds were heated to a range of temperatures (50 °–150 °C) and exposure times (1–60 min) similar to those registered in the upper soil layers during wildfires. Germination tests were carried out in plastic Petri dishes over 60 days. In general, the degree of seed germination promotion by dry heat treatments showed a wide interspecific variation, although the final germination level was increased in all the studied species except for Scorpiurus muricatus. The thermal pretreatment of 50 °C, however, was not effective for germination in any species, and rising the temperature to 70 °C only slightly enhanced the germination in Cytisus patens. The preheatings of 90 °C (5 and 10 min), 120 °C (5 and 10 min), and 150 °C (1 min) were the most effective in promoting seed germination. Hot water (100 °C) scarification also increased the final germination level in all cases, with the exception of C. patens. The germination rates after preheating were much lower than in mechanically scarified seeds and closely resembled those of the untreated seeds, except for C. reverchonii, whose seed germination rate decreased with heat. The response of species to heat shock had no clear relationship with life trait or with the specific post-fire regeneration strategy (obligate seeder or facultative resprouter). Those species coexisting in the same habitats had different heat optimal requirements for seed germination, an strategy suggested by some authors as minimizing interspecific competition in the secondary succession started after fire.

Hardseedness Heat Leguminosae Seed germination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Añorbe, M., Gómez, J. M., Pérez, M. A. & Fernández, B. 1990. Influencia de la temperatura sobre la germinación de semillas de Cytisus multiflorus (L'Her) Sweet y Cytisus oromediterraneus Riv. Mar. Studia Oecologica VII: 85-100.Google Scholar
  2. Arianoutsou, M. & Margaris, N. S. 1981. Early stages of regeneration after fire in a phryganic ecosystem (east Mediterranean). I. Regeneration by seed germination. Biol. Ecol. Méditer. 8: 119-128.Google Scholar
  3. Arianoutsou, M. & Margaris, N. S. 1982. Phryganic (east Mediterranean) ecosystems and fire. Ecol. Mediter. 8: 473-480.Google Scholar
  4. Auld, T. D. & O'Connell, M. A. 1991. Predicting patterns of post-fire germination in 35 eastern Australian Fabaceae. Australian J. Ecol. 16: 53-70.Google Scholar
  5. Baskin, J. M. & Baskin, C. C. 1989. Physiology of dormancy and germination in relation to seed bank ecology. Pp. 53-66. In: M. A. Leck, V. T. Thomas and R. L. Simpson (eds), Ecology of Soil Seed Banks. Academic Press, San Diego, California.Google Scholar
  6. Bradstock, R. A. & Auld, T. D. 1995. Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in southeastern Australia. J. Appl. Ecol. 92: 76-84.Google Scholar
  7. Bullock, J. M. & Webb, N. R. 1995. Responses to severe fires in heatland mosaics in southern England. Biol. Cons. 73: 207-214.Google Scholar
  8. Casal, M. 1982. Sucesion Secundaria en Vegetación de Matorral de Galicia tras dos Tipos de Perturbación: Incendio y Roza. Ph D. Thesis, University of Sevilla, Spain.Google Scholar
  9. Casal, M. 1987. Post-fire dynamics of shrubland dominated by Papilonaceae plants. Ecol. Mediter. 8: 87-98.Google Scholar
  10. Cavanagh, A. K. 1980. A review of some aspects of the germination of acacias. Proc. Roy. Soc. Victoria 91: 161-180.Google Scholar
  11. Clemente, A. S.; Rego, F. C. & Correia, O. A. 1996. Demographic patterns and productivity of post-fire regeneration in Portuguese Mediterranean maquis. Int. J. Wildland Fire 6: 5-12.Google Scholar
  12. Cochran, W. G. 1941. The distribution of the largest of a set of stimated variances as a fraction of their total. Ann. Eugen (London) 11: 47-61.Google Scholar
  13. Come, D. 1970. Les Obstacles á la Germination. Ed. Masson, Paris, 162 pp.Google Scholar
  14. Corral, R., Pita, J. M. & Pérez-García, F. 1990. Some aspects of seed germination in four species of Cistus L. Seed Sci. Technol. 18: 321-325.Google Scholar
  15. Cushwa, C. T., Martin, E. R. & Miller, R. L. 1968. The effects of fire on seed germination. J. Range Manag. 21: 250-254.Google Scholar
  16. David, H. A.; Hartley, H. O. & Pearson, E. S. 1954. The distribution of the ratio in a single normal sample of range to standard deviation. Biometrika 41: 482-493.Google Scholar
  17. De Bano, L. F., Dunn, P. H. & Conrad, C. E. 1977. Fire's effect on physical and chemical properties of chaparral soils. Pp. 65-74. In: H. H. Mooney & C. E. Conrad (eds), Symposium on Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems. U.S.D.A. Forest Service General Technical Report WO-3, Washington.Google Scholar
  18. Escudero, A., Carnes, L. F. & Pérez-García, F. 1997. Seed germination of gypsophites and gypsovags in semi-arid central Spain. J. Arid Env. 36: 487-497.Google Scholar
  19. Floyd, A. G. 1966. Effect of fire upon weed seeds in the wet sclerophyll forests of northern New South Wales. Austr. J. Bot. 14: 243-256.Google Scholar
  20. González-Rabanal, F. & Casal, M. 1995. Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116: 123-131.Google Scholar
  21. Hanes, T. L. 1971. Succession after fire in the chaparral of south-eastern California. Ecol. Monogr. 41: 27-52.Google Scholar
  22. Herranz, J. M.; Martínez-Sánchez, J. J., De Las Heras, J. & Ferrandis, P. 1996. Stages of plant succession in Fagus sylvaticaL. and Pinus sylvestrisL. forests of Tejera Negra Natural Park (central Spain), three years after fire. Israel J. Plant Sci. 44: 347-358.Google Scholar
  23. Jeffery, D. J.; Holmes, P. M. & Rebelo, A. G. 1988. Effects of dry heat on seed germination in selected indigenous and alien legume species in South Africa. South African J. Bot. 54: 28-34.Google Scholar
  24. Keeley, J. E. 1987. Role of fire in seed germination of woody taxa in California chaparral. Ecology 68: 434-443.Google Scholar
  25. Keeley, J. E. 1991. Seed germination and life history syndromes in the California chaparral. Bot. Rev. 57: 81-116.Google Scholar
  26. Martin, R. E.; Miller, R. L. & Cushwa, C. T. 1975. Germination response of legumes seeds subjected to moist and dry heat. Ecology 56: 1441-1445.Google Scholar
  27. Martínez-Sánchez, J. J. 1994. Dinámica de la Vegetación Postincendio en la Provincia de Albacete y Zonas Limítrofes de la Provincia de Murcia (Sureste de España). Ph.D. Thesis, University of Murcia, Spain.Google Scholar
  28. Martínez-Sánchez, J. J., Herranz, J. M., De las Heras, J. & Ferrandis, P. 1994. The importance of Leguminosae in the early stages of plant succession after fire in SE Spain. Proc. 2nd Int. Conf. Forest Fire Research, Vol. II: pp. 1217-1218, Coimbra (Portugal).Google Scholar
  29. Martínez-Sánchez, J. J.; Ferrandis, P., Herranz J. M. & Burgos, A. 1996. Evolución del valor pastoral de la vegetación colonizadora post-incendio en pinares del suroeste de la provincia de Albacete (España). Investigación Agraria: Sistemas y Recursos Forestales 5: 5-17.Google Scholar
  30. Mazzoleni, S. & Pizzolongo, P. 1990. Post-fire regeneration patterns of Mediterranean shrubs in the Campania region, southern Italy. Pp. 43-51. In: J. G. Goldamer & J. Jenkins (eds), Fire in Ecosystem Dynamics. SPB Academic Publishing, The Hague, the Netherlands.Google Scholar
  31. Moreno, J. M. & Oechel, W. C. 1991. Fire intensity effects on germination of shrubs and herbs in southern California chaparral. Ecology 72: 1993-2004.Google Scholar
  32. Moreno, J. M. & Oechel, W. C. 1994. Fire intensity as a determinant factor of postfire plant recovery in southern Californa chaparral. In: J. M. Moreno y W. C. Oechel (eds). The Role of Fire in Mediterranean-Type Ecosystems. SpringerVerlag, Berlin, pp. 26-45.Google Scholar
  33. Mott, J. J., Cook, S. J. & Williams. R. J. 1982. Influence of short duration, high temperature seeds treatment on the germination of some tropical and temperate legumes. Tropical Grasslands 16: 50-55.Google Scholar
  34. Naveh, Z. 1974. Effect of fire in Mediterranean Region. Pp. 401-434. In: T. T. Kozlowski & C. E. Ahlgren (eds), Fire and Ecosystems. Academic Press, New York.Google Scholar
  35. Naveh, Z. 1975. The evolutionary significance of fire in the Mediterranean region. Vegetatio, 3: 199-208.Google Scholar
  36. Papavassiliou, S. & Arianoutsou, M. 1993. Regeneration of the leguminous herbaceous vegetation following fire in a Pinus halepensis forest of Attica, Greece. In: L. Trabaud & R. Prodon (eds.), Fire in Mediterranean Ecosystems. Banyuls, France.Google Scholar
  37. Pereiras, J., Puentes, M. A. & Casal, M. 1985. Efecto de las altas temperaturas sobre la germinación de las semillas del tojo (Ulex europaeus L.). Studia Oecologica 6: 125-133.Google Scholar
  38. Pérez-García, F, Irondo, J. M., GonzálezBenito, M. E., Carnes, L. F., Tapia, J., Prieto, C., Plaza, R. & Pérez, C. 1995. Germination studies in endemic plant species of the Iberian Peninsula. Israel J. Plant Sci. 43: 125-133.Google Scholar
  39. Purdie, R.W. 1977. Early stages of regeneration after burning in dry sclerophyll vegetation. II. Regeneration by seed germination. Austr. J. Bot. 25: 35-46.Google Scholar
  40. Quinlivan, B. J. 1971. Seed coat impermeability in legumes. J.Austr. Inst. Agric. Sci. 37: 283-295.Google Scholar
  41. Roberts, H. A. 1981. Seed Banks in Soil. Adv. Appl. Biol. 6: 1-55.Google Scholar
  42. Roslton, M. P. 1978. Water impermeable seed dormancy. Bot. Rev. 44: 365-396.Google Scholar
  43. Roy, J. & Sonie, L. 1992. Germination and population dynamics of Cistus species in relation to fire. J. Appl. Ecol. 29: 647-655.Google Scholar
  44. Simpson, R. L.; Leck, M. A. & Parker, V. T. 1989. Seed banks: general concepts and methodological issues. In: M. A. Leck, V. T. Thomas y R. L. Simpson (eds), Ecology of Soil Seed Banks. Academic Press, San Diego, California.Google Scholar
  45. Tárrega, R.; Calvo, L. & Trabaud, L. 1992. Effect of high temperatures on seed germination of two woody Leguminosae. Vegetatio 102: 139-147.Google Scholar
  46. Thanos, C. A. & Georghiou, K. 1988. Ecophisiology of firestimulated seed germination in Cistus incanussubsp. creticus(L.) Heywood and C. salvifoliusL. Plant, Cell, Envir. 11: 841- 849.Google Scholar
  47. Thanos, C. A., Georghiou, K., Kadis, C. & Pantazi, C. 1992. Cistaceae: a plant family with hard seeds. Israel J. Bot. 41: 251-263.Google Scholar
  48. Trabaud, L. 1979. Etude du comportament de feu dans la Garrigue de Chêne kermes á partir des températures et des vitesses de propagation. Ann. Sci. Forest 36: 13-38.Google Scholar
  49. Trabaud, L. 1983. Evolution aprés incendie de la structure de quelques phytocénoses méditerranéennes du Bas-Languedoc (Sud France). Ann. Sci. Forest 40: 177-195.Google Scholar
  50. Trabaud, L. 1987. Fire and survival traits of plants. In: L. Trabaud (ed), The Role of Fire in Ecological Systems. SPB Acad. Publishing, the Hague, the Netherlands, pp. 65-89.Google Scholar
  51. Trabaud, L. & Lepart, J. 1980. Diversity and stability in garrigue ecosystems after fire. Vegetatio 43: 49-57.Google Scholar
  52. Trabaud, L. & Oustric, J. 1989. Heat requirements for seed germination of three Cistus species in the garrigue of southern France. Flora 183: 321-325.Google Scholar
  53. Troumbis, A. & Trabaud, L. 1986. Comparison of reproductive biological attributes of two Cistus species. Acta Oecol. (Oecologia Plantarum) 7: 235-250.Google Scholar
  54. Tukey, J. W. 1949. Comparing individual means in the analysis of variance. Biometrics 5: 99-114.Google Scholar
  55. Tutin, T. G., Heywood, V. H., Burges, N.A., Moore, D. M., Valiente, D. H. Walters, S.M. & Webb, D.A. 1964-1980. Flora Europaea. Cambridge University Press, England.Google Scholar
  56. Valbuena, L, Tárrega, R. & Luís, E. 1992. Influence of heat on seed germination of Cistus laurifoliusand Cistus ladanifer. Int. J. Wildland Fire 2: 15-20.Google Scholar
  57. Vuillemin, J. & Bulard, C. 1981. Ecophysiologie de la germination de Cistus albidusL. et Cistus monspeliensisL. Naturalia Monspeliensia, Série Botanique 46: 1-11.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • José M. Herranz
    • 1
  • Pablo Ferrandis
    • 1
  • Juan J. Martínez-Sánchez
    • 1
  1. 1.Department Plant Production & Agricultural Technology, E.T.S.I. AgrónomosUniversity of Castilla-La Mancha, Campus Universitario s/nAlbaceteSpain

Personalised recommendations