Skip to main content
Log in

Differential inducibilities of GFAP expression, cytostasis and apoptosis in primary cultures of human astrocytic tumours

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Glial fibrillary acidic protein (GFAP) is an astrocytic lineage-specific intermediate filament protein, and its expression or non-expression is inversely correlated with the tumourigenecity of astrocytoma cells. To estimate the GFAP levels of astrocytes in intracranial tumour tissues, we established primary cultures from six astrocytic tumour specimens and used a double-staining flow cytometric method to detect the different levels of GFAP among these primary cultures. Although these primary cultures exhibited the same Matrigel invasiveness, their GFAP expression is inversely related to the rate of cell growth and the histologic grade of the original tumour. Phenylacetate, 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate, which are potent inducers of differentiation in various cancer cells, have been examined for their effects on these primary cultures. Cytostasis was more or less caused by these compounds in all six primary cultures, but induction of GFAP was observed only in the primary culture derived from a less malignant astrocytoma specimen having the highest intrinsic GFAP level. Interestingly, this primary culture, but not others, also exhibited increased HRG-α expression after phenylacetate or sodium butyrate treatment. Loss of the inducibility of differentiation-related gene expression could be one of the events involved in the malignant progression of astrocytomas. In addition, the chemotherapeutic agent BiCNU has a killing effect on all six primary culture cells, with LD50 less than 60nM. The underlying mechanism was through the induction of apoptosis in these primary culture cells regardless of their varying malignancies of original tumours. However, unlike colon cancer and leukaemia cells, sodium butyrate could not induce apoptosis within 4 days in these astrocytic tumour cells, indicating that the cell context of different cell types indeed determined the ability of sodium butyrate to induce apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Ann Rev Biochem 1982; 51: 219–250.

    Article  PubMed  CAS  Google Scholar 

  2. Deck JHN, Eng LF, Bigbee J, Woodcock SM. The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol 1978; 42: 183–190.

    Article  PubMed  CAS  Google Scholar 

  3. Jacques CM, Turpin JC, Kujas M, Poreau A. GFA and S-100 protein levels as an index for malignancy in human gliomas and neurinomas. J Natl Cancer Inst 1979; 62: 479–483.

    Google Scholar 

  4. Duffy PE, Huang YY, Rapport MM. The relationship of glial fibrillary acidic protein to the shape, motility, and differentiation of human astrocytoma cells. Exp Cell Res 1982; 139: 145–157.

    Article  PubMed  CAS  Google Scholar 

  5. Eng LF, Rubinstein LJ. Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem 1978; 26: 513–522.

    PubMed  CAS  Google Scholar 

  6. Velasco ME, Dahl D, Roessmann U, Gambetti P. Immunohistochemical localization of GFAP in human glial neoplasms. Cancer (Phila) 1980; 45: 484–493.

    Article  CAS  Google Scholar 

  7. Rutka JT, Smith SL. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: Analysis of expression, proliferation, and tumorigenicity. Cancer Res 1993; 53: 3624–3631.

    PubMed  CAS  Google Scholar 

  8. Rutka JT, Hubbard SL, Fukuyama K, Matsuzawa K, Dirks PB, Becker LE. Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion, and adhesion of human astrocytoma cells. Cancer Res 1994; 54: 3267–3272.

    PubMed  CAS  Google Scholar 

  9. Samid D, Shack S, Sherman LT. Phenylacetate: A novel nontoxic inducer of tumor cell differentiation. Cancer Res 1992; 52: 1988–1992.

    PubMed  CAS  Google Scholar 

  10. Samid D, Yeh A, Prasanna P. Induction of erythroid differentiation and fetal hemoglobin production in human leukemic cells treated with phenylacetate. Blood 1992; 80: 1576–1581.

    PubMed  CAS  Google Scholar 

  11. Samid D, Shack S, Myers CE. Selective growth arrest and phenotypic reversion of prostate cancer cells in vitro by nontoxic pharmacological concentrations of phenylacetate. J Clin Invest 1993; 91: 2288–2295.

    Article  PubMed  CAS  Google Scholar 

  12. Samid D, Ram Z, Hudgins WR, et al. Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria. Cancer Res 1994; 54: 891–895.

    PubMed  CAS  Google Scholar 

  13. Ram D, Samid D, Walbridge S, et al. Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate. Cancer Res 1994; 54: 2923–2927.

    PubMed  CAS  Google Scholar 

  14. Thibault A, Samid D, Cooper MR, et al. Phase I study of phenylacetate administered twice daily to patients with cancer. Cancer (Phila) 1995; 75: 2932–2938.

    Article  CAS  Google Scholar 

  15. Prasanna P, Shack S, Wilson VL, Samid D. Phenylacetate in chemoprevention: in vitro and in vivo suppression of 5-aza-2′-deoxycytidine-induced carcinogenesis. Clin Cancer Res 1995; 1: 865–871.

    PubMed  CAS  Google Scholar 

  16. Berenblum I. The cocarcinogenic action of croton resin. Cancer Res 1941; 1: 44–48.

    CAS  Google Scholar 

  17. Driedger PE, Blumberg PM. Specific binding of phorbol ester tumor promoters. Proc Natl Acad Sci USA 1980; 77: 567–571.

    Article  PubMed  CAS  Google Scholar 

  18. Süss R, Kreibich G, Kinzel V. Phorbol esters as a tool in cell research? Eur J Cancer 1972; 8: 299–304.

    PubMed  Google Scholar 

  19. Yasukawa M, Hato T, Inatsuki A, Kobayashi Y. Expression of CD9 (p24) antigen on hematopoietic cells following treatment with phorbol ester. Acta Haematol 1988; 79: 133–136.

    Article  PubMed  CAS  Google Scholar 

  20. Gescher A, Reed DJ. Characterization of the growth inhibition induced by tumor-promoting phorbol esters and of their receptor binding in A549 human lung carcinoma cells. Cancer Res 1985; 45: 4315–4321.

    PubMed  CAS  Google Scholar 

  21. McBain JA, Pettit GR, Mueller GC. Bryostatin 1 antagonizes the terminal differentiating action of 12-O-tetradecanoylphorbol-13-acetate in a human colon cancer cell. Carcinogenesis 1988; 9: 123–129.

    PubMed  CAS  Google Scholar 

  22. Huang TS, Duyster J, Wang JYJ. Biological response to phorbol ester determined by alternative G1 pathways. Proc Natl Acad Sci USA 1995; 92: 4793–4797.

    Article  PubMed  CAS  Google Scholar 

  23. Huang TS, Kuo ML, Shew JY, Chou YW, Yang WK. Distinct p53-mediated G1/S checkpoint responses in two NIH3T3 subclone cells following treatment with DNA-damaging agents. Oncogene 1996; 13: 625–632.

    PubMed  CAS  Google Scholar 

  24. Frank DA, Sartorelli AC. Biochemical characterization of tyrosine kinase and phosphotyrosine phosphatase activity of HL-60 leukemia cells. Cancer Res 1988; 48: 4299–4306.

    PubMed  CAS  Google Scholar 

  25. Kuo ML, Huang TS, Lin JK. Preferential requirement for protein tyrosine phosphatase activity in the 12-Otetradecanoylphorbol-13-acetate-induced differentiation of human colon cancer cells. Biochem Pharmacol 1995; 50: 1217–1222.

    Article  PubMed  CAS  Google Scholar 

  26. Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980; 21: 793–798.

    PubMed  CAS  Google Scholar 

  27. Cummings JH. Fermentation in the human large intestine: evidence and implications for health. Lancet 1983; 1: 1206–1209.

    Article  PubMed  CAS  Google Scholar 

  28. Newmark HL, Lupton JR, Young CW. Butyrate as a differentiating agent: pharmacokinetics, analogues and current status. Cancer Lett 1994; 78: 1–5.

    Article  PubMed  CAS  Google Scholar 

  29. Perrine SP, Rudolph A, Faller DV, et al. Butyrate infusions in the ovine fetus delay the biologic clock for globin gene switching. Proc Natl Acad Sci USA 1988; 85: 8540–8542.

    Article  PubMed  CAS  Google Scholar 

  30. Constantoulakis P, Knitter G, Stamatoyannopoulos G. On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5-AzaC and AraC. Blood 1989; 74: 1963–1971.

    PubMed  CAS  Google Scholar 

  31. Perrine SP, Miller BA, Faller DV, et al. Sodium butyrate enhances fetal globin gene expression in erythroid progenitors of patients with Hb SS and betathalassemia. Blood 1989; 74: 454–459.

    PubMed  CAS  Google Scholar 

  32. Staiano-Coico L, McMahon CK, Pagan-Charry I, LaBruna A, Piraino V, Higgins PJ. Sodium-N-butyrate induces cytoskeletal rearrangements and formation of cornified envelopes in cultured adult human keratinocytes. Cell Tissue Kinet 1989; 22: 361–375.

    PubMed  CAS  Google Scholar 

  33. Hague A, Manning AM, van-der-Stappen JW, Paraskeva C. Escape from negative regulation of growth by transforming growth factor beta and from the induction of apoptosis by the dietary agent sodium butyrate may be important in colorectal carcinogenesis. Cancer Metastasis Rev 1993; 12: 227–237.

    Article  PubMed  CAS  Google Scholar 

  34. Filippovich I, Sorokina N, Khanna KK, Lavin MF. Butyrate induced apoptosis in lymphoid cells preceded by transient over-expression of HSP70 mRNA. Biochem Biophys Res Commun 1994; 198: 257–265.

    Article  PubMed  CAS  Google Scholar 

  35. Buckley AR, Krumenacker JS, Buckley DJ, et al. Butyrate-induced reversal of dexamethasone resistance in autonomous rat Nb2 lymphoma cells. Apoptosis 1997; 2: 518–528.

    Article  PubMed  CAS  Google Scholar 

  36. Buckley AR, Leff MA, Buckley DJ, Magnuson NS, de Jong G, Gout PW. Alterations in pim-1 and c-myc expression associated with sodium butyrate-induced growth factor-dependency in autonomous rat Nb2 lymphoma cells. Cell Growth Diff 1996; 7: 1713–1721.

    PubMed  CAS  Google Scholar 

  37. Boisteau O, Gautier F, Cordel S, et al. Apoptosis induced by sodium butyrate treatment increases immunogenicity of a rat colon tumor cell line. Apoptosis 1997; 2: 403–412.

    Article  PubMed  CAS  Google Scholar 

  38. Perrin P, Cassagnau E, Burg C, et al. An interleukin-2/ sodium butyrate combination as immunotherapy for rat colon cancer peritoneal carcinomatosis. Gastroenterology 1994; 107: 1697–1708.

    PubMed  CAS  Google Scholar 

  39. Huang TS, Shu CH, Shih YL, et al. Protein tyrosine phosphatase activities are involved in apoptotic cancer cell death induced by GL331, a new homolog of etoposide. Cancer Lett 1996; 110: 77–85.

    Article  PubMed  CAS  Google Scholar 

  40. Huang TS, Shu CH, Yang WK, Whang-Peng J. Activation of CDC 25 phosphatase and CDC 2 kinase involved in GL331-induced apoptosis. Cancer Res 1997; 57: 2974–2978.

    PubMed  CAS  Google Scholar 

  41. Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239–3245.

    PubMed  CAS  Google Scholar 

  42. Huang TS, Yang WK, Whang-Peng J. GL331-induced disruption of cyclin B1/CDC 2 complex and inhibition of CDC 2 kinase activity. Apoptosis 1996; 1: 213–217.

    Article  CAS  Google Scholar 

  43. Ahmed SA, Gogal RM Jr, Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to 3 Hthymidine incorporation assay. J Immunol Methods 1994; 170: 211–224.

    Article  PubMed  CAS  Google Scholar 

  44. Shu CH, Yang WK, Huang TS. Increased cyclin B1/ CDC 2 kinase activity and phosphorylation of Bcl-2 associated with paclitaxel-induced apoptosis in human nasopharyngeal carcinoma cells. Apoptosis 1996; 1: 141–146.

    Article  CAS  Google Scholar 

  45. Holmes WE, Sliwkowski MX, Akita RW, et al. Identification of heregulin, a specific activator of p185erbB2. Science 1992; 256: 1205–1210.

    PubMed  CAS  Google Scholar 

  46. Marchionni MA, Goodearl ADJ, Chen MS, et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 1993; 362: 312–318.

    Article  PubMed  CAS  Google Scholar 

  47. Reeves SA, Helman LJ, Allison A, Israel MA. Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci USA 1989; 86: 5178–5182.

    Article  PubMed  CAS  Google Scholar 

  48. Bongcam-Rudloff E, Nistêr M, Betsholtz C, et al. Human glial fibrillary acidic protein: complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer Res 1991; 51: 1553–1560.

    PubMed  CAS  Google Scholar 

  49. Weinstein DE, Shelanski ML, Liem RKH. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J Cell Biol 1991; 112: 1205–1213.

    Article  PubMed  CAS  Google Scholar 

  50. Matsuoka Y, Nishizawa K, Yano T, et al. Two different protein kinases act on a different time schedule as glial filament kinases during mitosis. EMBO J 1992; 11: 2895–2902.

    PubMed  CAS  Google Scholar 

  51. Inagaki M, Gonda Y, Nishizawa K, et al. Phosphorylation sites linked to glial filament disassembly in vitro locate in a non-a-helical head domain. J Biol Chem 1990; 265: 4722–4729.

    PubMed  CAS  Google Scholar 

  52. Tsujimura K, Tanaka J, Ando S, et al. Identification of phosphorylation sites on glial fibrillary acidic protein for cdc2 kinase and Ca2+-calmodulin-dependent protein kinase II. J Biochem 1994; 116: 426–434.

    PubMed  CAS  Google Scholar 

  53. Steinert PM, Roop DR. Molecular and cellular biology of the intermediate filaments. Ann Rev Biochem 1988; 57: 593–625.

    Article  PubMed  CAS  Google Scholar 

  54. Collins VP, James CD. Gene and chromosomal alterations associated with the development of human gliomas. FASEB J 1993; 7: 926–930.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, MH., Yang, W.K., Whang-Peng, J. et al. Differential inducibilities of GFAP expression, cytostasis and apoptosis in primary cultures of human astrocytic tumours. Apoptosis 3, 171–182 (1998). https://doi.org/10.1023/A:1009698822305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009698822305

Navigation