Skip to main content
Log in

On Equilibrium Constants for Aqueous Geochemical Reactions in Water Unsaturated Soils and Sediments

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Usually, equilibrium constants for aqueous geochemical reactions in the unsaturated zone are assumed to be equal to those for free water solutions (at atmospheric pressure) considered in classical water chemistry. This paper shows that high negative pressures in pore water may essentially change these constants in dry soils and sediments.

The influence of negative capillary pressures on equilibrium constants for some important reactions occurring in the upper part of the unsaturated zone is analyzed. It is shown that values of these constants at low water contents may differ from those normally used by orders of magnitude. Sediment drying usually decreases the equilibrium constant for salt dissolution-precipitation reactions (makes precipitation easier) and for silicate weathering (delays it), whilst in the case of dedolomitization, orthoclase-albite transition and some types of cation exchange the equilibrium constant grows and these processes in dry soils and sediments have to be enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bignell, N. (1984) Partial molar volumes of atmospheric gases in water. Journ. Phys. Chem. 88, 5409-5412

    Article  Google Scholar 

  • Bruton, C. J. and Viani, B. E. (1992) Geochemical modeling of water-rock interactions in the unsaturated zone. In Water-Rock Interaction (eds. Y. K. Kharaka and A. S. Maest), pp. 705-708. Balkema, Rotterdam.

    Google Scholar 

  • Burt, T. P., Heathwaite, A. L. and Trudgill, S. T. (ed.) (1993) Nitrate: Processes, Patterns and Management. John Wiley & Sons, Chichester.

    Google Scholar 

  • Clark, S. P. (ed.) (1966) Handbook of Physical Constants. Amer. Geol. Soc., N. Y.

    Google Scholar 

  • Carmichael, R. S. (ed.) (1990) Practical Handbook of Physical Properties of Rocks and Minerals. CRC Press, N.Y.

    Google Scholar 

  • Derjaguin, B. V. and Churaev, N. V. (1974) Structural component of disjoining pressure. J. Colloid Interface Sci. 49, 249-255.

    Article  Google Scholar 

  • Friedman, G. M. and Sanders, J. E. (1967) Origin and occurrence of dolostones. In Developments in Sedimentology (eds. G. V. Chilingar et al.), Vol. 9A, pp. 267-348. Elsevier, Amsterdam.

    Google Scholar 

  • Grundmann, G. L., Renault, P, Rosso, L and Bardin, R. (1995) Differential effects of soil water content and temperature on nitrification and airation. Soil Sci. Soc. Amer. J. 59, 1342-1349.

    Article  Google Scholar 

  • Johnson, J. W., Oelkers, E. H. and Helgeson, H. C. (1992) SUPCRT92: A software package for calculating the standard molar thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C. Computers and Geosciences 18, 899-947.

    Article  Google Scholar 

  • Klute, A. (ed.) (1986) Methods of soil analysis. Part 1. 2nd edn. Agron. Monogr., Vol. 9. ASA and SSSA, Madison, WI.

  • Krumgaltz, B. S., Pogorelsky, R. and Pitzer, K. S. (1996) Volumetric properties of single aqueous electrolytes from zero to saturation concentration at 298.15 °K represented by Pitzer's ion-interaction equations. J. Phys. Chem. Ref. Data 25(2), 663-689.

    Article  Google Scholar 

  • Lindsay, W. (1979) Chemical Equilibria in Soils. John Wiley & Sons, N.Y.

    Google Scholar 

  • Lown, D. A., Thirsk, H. R. and Wynne-Jones L. (1968) Effect of pressures on ionization equilibria in water at 25 °C. Trans. Faraday Soc. 64, 2073-2080.

    Article  Google Scholar 

  • Mattigod, S. V. and Kittrick, J. A. (1980) Temperature and water activity as variables in soil mineral activity diagrams. Soil Sci. Soc. Am. J. 44, 149-154.

    Article  Google Scholar 

  • Mercury, L. and Tardy, Y. (1997) Caracteristiques physicochimiques de l'eau capillaire et des gouttelettes de brouillard C.R. Acad. Sci. Paris 324, Ser. IIa, 863-873

    Google Scholar 

  • Michurin, B. N. and Onischenko, V. G. (1971) Change of pore-water pressure with the thickness of the absorbed water film. In Proceeding of the Agro-physical Institute, Leningrad 32, 67-71 (In Russian).

    Google Scholar 

  • Millero, F. J. (1982) The effect of pressure on the solubility of minerals in water and seawater. Geochimica et Cosmochimica Acta 46, 11-22.

    Article  Google Scholar 

  • Moore, J. C., Battino, R., Rettich, T. R., Handa, Y. P. and Wilhelm, E. (1982) Partial molar volumes of “gases” at infinite dilution in water at 298.15 K. J. Chem. Eng. Data 27, 22-24.

    Article  Google Scholar 

  • Morel, F. M. M. (1983) Principles of Aquatic Chemistry. Wiley-Intersci. Publ., N.Y.

    Google Scholar 

  • Owen, B. B. and Brinkley, S. R. (1941) Calculation of the effect of pressure upon ionic equilibrium in pure water and in salt solutions. Chem. Rev. 42, 461-474.

    Article  Google Scholar 

  • Sha-Qingan, Pan-Zhengpu and Wang-Yao (1979) Recent dedolomitization in the vadose zone. Scientica Geologica Sinica 4, 378-383.

    Google Scholar 

  • Shock, E. L and Helgeson H. C. (1982) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochimica et Cosmochimica Acta 52, 2009-2036.

    Article  Google Scholar 

  • Stumm, W. and Morgan, J. J. (1996) Aquatic Chemistry. Wiley-Intersci. Publ., N.Y.

    Google Scholar 

  • Tan, Kim H. (1994) Environmental Soil Science. Marcel Dekker, Inc., N.Y.

    Google Scholar 

  • Tardy, Y. and Touret, O. (1987) Hydration energies of smectites: a model for glauconite, illite, and corrensite formation. In: Proc. of the Intern. Clay Conf., Denver, 1985 (eds. L. G. Schultz, A. Van Olphen and F. A. Mumpton), pp. 46-52. The Clay Minerals Society, Bloomington, Indiana.

    Google Scholar 

  • Weast R. C. (1965) Handbook of Chemistry and Physics. The Chemical Rubber Co., Cleveland.

    Google Scholar 

  • Zilberbrand, M. (1997) A nonelectrical mechanism of ion exclusion in thin water films in finely dispersed media. Journ. of Colloid and Interface Science 192(2), 471-474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilberbrand, M. On Equilibrium Constants for Aqueous Geochemical Reactions in Water Unsaturated Soils and Sediments. Aquatic Geochemistry 5, 195–206 (1999). https://doi.org/10.1023/A:1009695510370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009695510370

Navigation