Characterization of Pillared Layered Structures

Abstract

Recent progress in characterizing pillared layered materials, and especially PILCs (pillared interlayered clays) are reviewed in terms of the pillaring process. Smectite platelet aggregation and the influence of pillaring agents on it (especially Al13-Keggin ion) are described, and the aqueous Al13 species themselves. It is established that “Al13” solutions contain dimeric and higher oligomeric species, that Ga3+ substitution into Keggin ion (to give [GaO4Al12(OH)24 (OH2)12]7+) has a stabilizing effect, which in turn thermally stabilizes PILCs derived from it. Chemical details of the mechanism during precursor formation are still obscure, but 27Al and29 Si MAS-NMR have clarified cross-linking mechanisms during calcination (confirming a tetrahedral-inversion mechanism for beidellite). Montmorillonite and beidellite give micro- and mesoporous PILCs with bimodal micro to ultra-micropore (6–10 Å) distribution. Recent XAFS results provide structural data for pillaring (in “chromia”-pillared group IV phosphates) and also direct evidence for cross-linking. The complex interplay between platelet/colloid ordering and micro-meso porosity in PILCs, and new porosity determination methods, are described, as also catalytic ones for monitoring acidity/shape-selectivity. Small- (air-gases, hydrocarbons) and medium-sized (e.g., pyrene) molecules sorption, and AFM investigations are discussed. Both indicate that pillar density, and even strain removal from TOT smectite layers on pillaring, are measurable. Prospects are outlined for applying these advances in characterization methods to newer sol-gel prepared PLS.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    The earliest quoted reference appears to be: R.C. Turner and J.E. Brydon, Soil Science 100, 176 (1965) (report of a hydroxy-Al interlayered smectite clay with basal spacing 17.4 Å after calcination); D.E.W. Vaughan, in Catalysis Today, edited by R. Burch (Elsevier, Amsterdam, 1988), vol. 2, p. 187, previews pioneering literature.

  2. 2.

    Pillared Layered Structures, Current Trends and Applications, edited by I.V. Mitchell (Elsevier, Amsterdam, 1990); Expanded Clays and Other Microporous Solids, edited by M.L. Occelli and H.E. Robson (Van Nostrand, New York, 1992).

    Google Scholar 

  3. 3.

    A. Clearfield, in Multifunctional Mesoporous Inorganic Solids, edited by C.A.C. Sequeira and M.J. Hudson (Kluwer, Amsterdam, 1993), p. 159; T.J. Pinnavaia, in Heterogeneous Catalysis, edited by B. Shapiro (Texas A&M Univ. Press, College Station, TX, 1984), and refs. therein; A. Clearfield and M.Kustenmacher, Pillared layered materials, in Supramolecular Architecture. Control in Thin Films and Solids, ACS Symp. Ser., edited by T. Bein (American Chemical Society,Washington, 1992), vol. 499, p. 128.

    Google Scholar 

  4. 4.

    A. De Stefanis and A.A.G. Tomlinson, in preparation.

  5. 5.

    P.H. Hsu, in Minerals in Soil Environments, edited by J.B. Dixon et al. (Soil Science Soc. of America, Madison, WI, 1977); P.H. Hsu, Clays and Clay Minerals 36, 25 (1988).

    Google Scholar 

  6. 6.

    E.S. Boeck, P.V. Coveney, and N.T. Skipper, J. Amer. Chem. Soc. 117, 12608 (1995) and refs. therein.

    Google Scholar 

  7. 7.

    B. Choubari and J.J. Fripiat, Clays and Clay Minerals 29, 260 (1981).

    Google Scholar 

  8. 8.

    D. Plee, L. Gatineau, and J.J. Fripiat, Clays and Clay Minerals 35, 81 (1987).

    Google Scholar 

  9. 9.

    T.J. Pinnavaia, Chemical Physics of Intercalation, NATO ASI Ser. B 172, 233 (1994).

    Google Scholar 

  10. 10.

    A. De Stefanis and A.A.G. Tomlinson, in Materials Sci. Forum, edited by D. Fiorani and M. Magini (TTP, Enfield, 1997), vols. 235–238, p. 901, and unpublished work. Note that (001) mica (a common surface utilised for AFM studies) tends to ‘direct’ assembly of charged particles, see S. Mulley, A. Sironi, A. De Stefanis, and A.A.G. Tomlinson, J. Mater. Chem. 6, 661 (1996).

    Google Scholar 

  11. 11.

    J.F. Keggin, Nature 131, 908 (1933); G. Johansson, Acta Chem. Scand. 14, 769 (1960).

    Google Scholar 

  12. 12.

    M. Henry, J.P. Jolivet, and J. Livage, Aqueous chemistry of metal cations: Hydrolysis, condensation, complexation, and structure, in Structure and Bonding, vol. 77 (Springer Verlag, Berlin, 1992); J.-Y. Bottero, M. Axelos, D. Tchoubar, J.M. Cases, J.J. Fripiat, and F. Fiessinger, J. Coll. Interface Sci. 117, 47 (1987).

    Google Scholar 

  13. 13.

    L.F. Nazar and L.C. Klein, J. Amer. Ceram. Soc. 71, L85 (1988); G. Fui, L.F. Nazar, and A.D. Dash, Chem. Mater. 3, 602 (1991) and refs. therein.

    Google Scholar 

  14. 14.

    S.M. Bradley and R.A. Kydd, Catal. Letts. 8, 185 (1991); see also K. Brandt and R.A. Kydd, Chem. Mater. 9, 567 (1997) and refs. therein.

    Google Scholar 

  15. 15.

    J.B. Nagy, J.-C. Bertrand, I. Palinko, and I. Kiricsi, in Progress in Zeolite and Microporous Materials, edited by H. Chon, S.-K. Ihm, and Y.S. Uh, Stud. Surf. Sci. Catal. (Elsevier, Amsterdam, 1997), vol. 105, p. 1957. 27Al MAS-NMR has also clarified structural changes in polyhydroxy-aluminium species on calcination. It was confirmed that boehmite, pseudo-boehmite and corundum (γ-alumina) give rise to octahedral [AlO6] on calcination: R.C.T. Slade, J.C. Southern, and I.M. Thompson, J. Mater. Chem. 1, 563 (1991); ibid 875. However, the known hydrolysis changes undergone inside layers makes these useful mainly for comparison purposes.

    Google Scholar 

  16. 16.

    J. Rose, A. Manceau, A. Masion, and J.-Y. Bottero, Langmuir 13, 3240 (1997).

    Google Scholar 

  17. 17.

    A. Molinard, Ph.D. thesis, Univ. Antwerp (1994).

  18. 18.

    H. Van Olphen and J.J. Fripiat, Data Handbook for Clay Minerals and Other Non-Metallic Minerals (Pergamon Press, Oxford, 1979), p. 22.

    Google Scholar 

  19. 19.

    M. Alcantara-Rodriguez, P. Olivera-Pastor, E. Rodriguez-Castellon, and A. Jimenez-Lopez, J. Mater. Chem. 6, 247 (1996) and refs. therein. The second possibility, of differentiated intercalation, i.e., entry of one type of pillar into one sheet and another into an adjacent one, also cannot be excluded.

    Google Scholar 

  20. 20.

    Reported at CEA-PLS Materials Meeting (Athens, 1994); kgscale materials supplied by Straton Hi-tech, distributed to participants. Møssbauer results reported by T. Backas, A. Moukarikis, and N.H. Gangas, Clays and Clay Minerals (1997), in press.

  21. 21.

    G. Perez, A. DeStefanis, and A.A.G. Tomlinson, J. Mater. Chem. 7, 351 (1997).

    Google Scholar 

  22. 22.

    L.F. Nazar, S.W. Liblong, and X.T. Yin, J. Amer. Chem. Soc. 113, 5889 (1991), as deduced from film XRPD (d D17:94 γ A) showing 14 0k0 (00l) reflections; composition being derived from chemical/TG analysis.

    Google Scholar 

  23. 23.

    X. Jiao, D. Chen, W. Pang, and Y. Yue, Chem. Commun. (1998), in press.

  24. 24.

    S. Chevalier, R. Franck, H. Suquet, J.-F. Lambert, and D. Barthomeuf, J. Chem. Soc. Faraday Trans. 90, 667 (1994).

    Google Scholar 

  25. 25.

    M.L. Occelli, S.A.C. Gould, and B. Drake, Microporous Materials 2, 205 (1994).

    Google Scholar 

  26. 26.

    E.g. the TEM investigations of delaminated hectorite in: M.L. Occelli, J.V. Senders, and J. Lynch, J. Catal. 107, 557 (1987).

    Google Scholar 

  27. 27.

    T.J. Pinnavaia, M.S. Tzou, S.D. London, and R.M. Raythatha, J. Mol. Catal. 27, 195 (1985).

    Google Scholar 

  28. 28.

    P. Maireles-Torres, P. Olivera-Pastor, E. Rodriguez-Castellon, A. Jimenez-Lopez, and A.A.G. Tomlinson, J. Mater Chem. 1, 319 (1991); see also: K. Peeters, P. Grobet, and E.F. Vansant, J. Mater Chem. 6, 239 (1996), for a contrary view.

    Google Scholar 

  29. 29.

    S. Lee, H. Miyazaki, S.D. Mahanti, and S.A. Solin, Phys. Rev. Lett. 62, 3066 (1989); Y. Cai, J.S. Chung, M.F. Thorpe, and S.D. Mahanti, Phys. Rev, B. 41, 9422 (1990).

    Google Scholar 

  30. 30.

    P. Maireles-Torres, P. Olivera-Pastor, E. Rodriguez-Castellon, A. Jimenez-Lopez, and A.A.G. Tomlinson, J. Mater. Chem. 1, 739 (1991).

    Google Scholar 

  31. 31.

    G. Alberti, M. Casciola, U. Costantino, and R. Vivani, Adv. Mater. 8, 291 (1996).

    Google Scholar 

  32. 32.

    E.g., Q.J. Yan, W.H. Han, and Y.S. Chen, J. Chem. Soc. Chem. Commun. 1865 (1995).

  33. 33.

    D.J. Jones, J. Rozieres, P. Maireles-Torres, A. Jimenez-Lopez, P. Olivera-Pastor, E. Rodriguez Castellon, and A.A.G. Tomlinson, Inorg. Chem. 34, 4611 (1995).

    Google Scholar 

  34. 34.

    A. Schutz, D. Plee, F. Borg, P. Jacobs, G. Poncelet, and J.J. Fripiat, in Proc. Internat. Clay Conf., Denver, 1985, edited by L.G. Schultz, H. van Olphen, and F.A. Mumpton (The Clay Minerals Soc., Bloomington, IN, 1987), p. 305.

    Google Scholar 

  35. 35.

    P. Olivera-Pastor, P. Maireles-Torres, E. Rodriguez Castellon, A. Jimenez-Lopez, T. Cassagneau, D.J. Jones, and J. Rozieres, Chem. Mater. 8, 1758 (1996).

    Google Scholar 

  36. 36.

    B.C. Lippens and J.H. De Boer, J. Catal. 4, 319 (1965); see also: H.Y. Tzu and E.F. Vansant, J. Porous Mater. 2, 107 (1995).

    Google Scholar 

  37. 37.

    H.Y. Zhu, C.Q. Lu, N. Maes, and E.F. Vansant, Chem. Soc. Faraday Trans. 93, 1417 (1997).

    Google Scholar 

  38. 38.

    F. Bergaya, L. Gatineau, and H. Van Damme, in Multifunctional Mesoporous Inorganic Solids, NATO ASI Ser., edited by C.A.C. Sequeira and M.J. Hudson (Kluwer Academic, London, 1993), vol. 400, p. 19. See also: A.A.G. Tomlinson, in Pillared layered Structures, Current Trends and Applications, edited by I.V. Mitchell (Elsevier Science, Amsterdam, 1990), p. 91; and K. Ohtsuka, Chem. Mater. 9, 2039 (1997), for less extreme pillar orderings.

    Google Scholar 

  39. 39.

    A. De Stefanis, S. Foglia, and A.A.G. Tomlinson, Materials Sci. Forum, edited by D. Fiorani and E. Bonetti (TTP, Switzerland, 1995), vol. 195, p. 103; G. Perez and A.A.G. Tomlinson, in Syntheses and Methodologies in Inorganic Chemistry, vol. 7, edited by S. Daolio et al. (C.N.R., Rome, 1998), in press.

    Google Scholar 

  40. 40.

    I. Heylen, N. Maes, A. Molinard, and E.F. Vansant, in Process Technology Proc., vol. 11, Separation Technology, edited by E.F. Vansant (Elsevier, Amsterdam, 1994), p. 355.

    Google Scholar 

  41. 41.

    A. De Stefanis, G. Perez, and A.A.G. Tomlinson, J. Mater Chem. 4, 959 (1994).

    Google Scholar 

  42. 42.

    J. Butterworth, S.J. Tavener, and S.J. Barlow, in Chemistry of Waste Minimization, edited by J.H. Clark (Blackie, London, 1995), p. 522, and refs. therein.

    Google Scholar 

  43. 43.

    M.L. Occelli, P.A. Peaden, G.P. Ritz, P.S. Iyer, and M. Yokoyama, Microporous Materials 1, 99 (1993).

    Google Scholar 

  44. 44.

    R. Molina, A. Schutz, and G. Poncelet, J. Catal. 145, 79 (1994); S. Moreno, R.S. Kou, and G. Poncelet, J. Catal. 162, 198 (1996).

    Google Scholar 

  45. 45.

    See: W. Souverijns, W. Verrelst, G. Vanbutsele, J.A. Martens, and P.A. Jacobs, J. Chem. Soc. Chem. Commun. 1671 (1994) for comparison plots of n-decane isomerisation with zeolites.

  46. 46.

    M. Raimondo, A. De Stefanis, G. Perez, and A.A.G. Tomlinson, Applied Catal., A (1998), in press.

  47. 47.

    A. Gil, G. Guiu, P. Grange, and M. Montes, J. Phys. Chem. 99, 301 (1995).

    Google Scholar 

  48. 48.

    A. Corma, Chem. Revs. 87, 2373 (1997).

    Google Scholar 

  49. 49.

    B.Y. Chen, H. Kim, S.D. Mahanti, T.J. Pinnavaia, and Z.X. Cai, J. Chem. Phys. 100, 3872 (1994).

    Google Scholar 

  50. 50.

    L. Jelinek and E. sz. Kovats, Langmuir 10, 4225 (1994).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tomlinson, A.A. Characterization of Pillared Layered Structures. Journal of Porous Materials 5, 259–274 (1998). https://doi.org/10.1023/A:1009686322154

Download citation

  • pillaring
  • characterization
  • porosity
  • catalysis