Skip to main content
Log in

Inhibition of Na+/K+-ATPase may be one mechanism contributing to potassium efflux and cell shrinkage in CD95-induced apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

To investigate the involvement of K+ efflux in apoptotic cell shrinkage, we monitored efflux of the K+ congener,86 Rb+, and cell volume during CD95-mediated apoptosis in Jurkat cells. An anti-CD95 antibody caused apoptosis associated with intracellular GSH depletion, a significant increase in 86Rb+ efflux, and a decrease in cell volume compared with control cells. Preincubating Jurkat cells with Val-Ala-Asp-chloromethylketone (VAD-cmk), an inhibitor of caspase proteases, prevented the observed 86Rb+ efflux and cell shrinkage induced by the anti- CD95 antibody. A wide range of inhibitors against most types of K+ channels could not inhibit CD95-mediated efflux of86 Rb+, however, the uptake of86 Rb+ by Jurkat cells was severely compromised when treated with anti-CD95 antibody. Uptake of86 Rb+ in Jurkat cells was sensitive to ouabain (a specific Na+/K+-ATPase inhibitor), demonstrating Na+/K+-ATPase dependent K+ uptake. Ouabain induced significant86 Rb+ efflux in untreated cells, as well as it seemed to compete with86 Rb+ efflux induced by the anti-CD95 antibody, supporting a role for Na+/K+-ATPase in the CD95-mediated86 Rb+ efflux. Ouabain treatment of Jurkat cells did not cause a reduction in cell volume, although together with the anti-CD95 antibody, ouabain potentiated CD95-mediated cell shrinkage. This suggests that the observed inhibition of Na++/K+-ATPase during apoptosis may also facilitate apoptotic cell shrinkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    PubMed  Google Scholar 

  2. Rasgado-Flores H, Pena-Rasgado C, Ehrenpreis S. Cell volume and drug action: some interactions and perspectives. Drug Develop Res 1995; 36: 61–80.

    Google Scholar 

  3. H¨aussinger D. The role of cellular hydration in the regulation of cell function. Biochem J 1996; 313: 697–710.

    PubMed  Google Scholar 

  4. Bortner CD, Hughes FM Jr, Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 1997; 272: 32436–32442.

    PubMed  Google Scholar 

  5. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 1997; 272: 30567–30576.

    PubMed  Google Scholar 

  6. Hoffman EK, Simonsen LO. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 1989; 69: 315–382.

    PubMed  Google Scholar 

  7. Barbiero G, Duranti F, Bonelli G, Amenta JS, Baccino FM. Intracellular ionic variations in the apoptotic death of L cells by inhibitors of cell cycle progression. Exp Cell Res 1995; 217: 410–418.

    PubMed  Google Scholar 

  8. Benson RSP, Heer S, Dive C, Watson JM. Characterization of cell volume loss in CEM-C7 A cells during dexamethasoneinduced apoptosis. Am J Physiol 1996; 270(4 Pt1): C1190–C1203.

    PubMed  Google Scholar 

  9. McCarthy JV, Cotter TG. Cell shrinkage and apoptosis: a role for potassium and sodium efflux. Cell Death Differ 1997; 4: 756–770.

    Google Scholar 

  10. Skou JC, Esmann M. The Na,K-ATPase. J Bioenerg Biomembr 1992; 24: 249–261.

    PubMed  Google Scholar 

  11. Tosteson DC, Hoffman JF. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 1960; 44: 169–194.

    PubMed  Google Scholar 

  12. MacKnight ADC, Leaf A. Regulation of cellular volume. Physiol Rev 1997; 57: 510–573.

    Google Scholar 

  13. Alvarez-Leefmans FJ, Gamiño SM, Reuss L. Cell volume changes upon sodium pump inhibition in helix aspersa neurones. J Physiol 1992; 458: 603–619.

    PubMed  Google Scholar 

  14. Smith TW, Rasmusson RL, Lobaugh LA, Lieberman M. Na+/K+pump inhibition induces cell shrinkage in cultured chick cardiac myocytes. Basic Res Cardiol 1993; 88: 411–420.

    PubMed  Google Scholar 

  15. van den Dobbelsteen DJ, Nobel CSI, Schlegel J, Cotgreave IA, Orrenius S, Slater AFG. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J Biol Chem 1996; 271: 15420–15427.

    PubMed  Google Scholar 

  16. Boon NA, Oh VMS, Taylor EA, Johansen T, Aronson JK, Grahame-Smith DG. Measurement of specific [3H]-ouabain binding to different types of human leucocytes. Br J Clin Pharmacol1984; 18: 153–161.

    PubMed  Google Scholar 

  17. Nobel CSI, Burgess DH, Zhivotovsky B, Burkitt MJ, Orrenius S, Slater AFG. Mechanism of dithiocarbamate inhibition of apoptosis: thiol oxidation by dithiocarbamate disulfides directly inhibits processing of the caspase-3 proenzyme. Chem Res Toxicol 1997; 10: 636–643.

    PubMed  Google Scholar 

  18. Celsi G, Nishi A, Akusj¨arvi G, Aperia A. Abundance of Na(+)-K(+)-ATPase mRNA is regulated by glucocorticoid hormones in infant rat kidneys. Am J Physiol 1991; 260(2 Pt2): F192–F197.

    PubMed  Google Scholar 

  19. Esmann, M. ATPase and phosphatase activity of Na+, K+-ATPase: molar and specific activity, protein determination. Meth Enzymol 1988; 156: 105–115.

    PubMed  Google Scholar 

  20. Dolle RE, Hoyer D, Prasad CVC, Schmidt SJ, Helaszek CT, Miller RE, Ator MA. P1 aspartate-based peptide alpha-((2,6–dichlorobenzoyl)oxy)methyl ketones as potent time-dependent inhibitors of interleukin-1 beta-converting enzyme. J Med Chem1994; 37: 563–564.

    PubMed  Google Scholar 

  21. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997; 272: 17907–17911.

    Article  PubMed  Google Scholar 

  22. Vanags DM, P¨orn-Ares MI, Coppola S, Burgess DH, Orrenius S. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 1996; 271: 31075–31085.

    PubMed  Google Scholar 

  23. Cook NS, Quast U. Potassium Channels: Structure, Classification, Function and Theurapeutic Potential. Chichester: Ellis Horwood Ltd., 1989: 181–255.

    Google Scholar 

  24. Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Ann Rev Immunol 1995; 13: 623–653.

    Google Scholar 

  25. Grinstein S, Smith JD. Calcium-independent cell volume regulation in human lymphocytes. Inhibition by charybdotoxin. J Gen Physiol 1990; 95: 97–120.

    PubMed  Google Scholar 

  26. Beauvais F, Michel L, Dubertret L. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. role of K+channels. J Leukocyte Biol 1995; 57: 851–855.

    PubMed  Google Scholar 

  27. Garay RP, Nazaret C, Hannaert PA, Cragoe EJ Jr. Demonstration of a [K+,Cl¡ ]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl¡ ]-cotransport system. Mol Pharmacol 1988, 33: 696–701.

    PubMed  Google Scholar 

  28. Giunta C, Cavaletto M, Pergola L, Pessione E, Bracchino P. Modulation of Na+/K+pump in intact erythrocytes by cardioglycosides, steroid hormones and ouabain-like compounds. Gen. Parmacol. 1992; 23: 683–687.

    Google Scholar 

  29. Krammer PH. The CD95 (APO-1/Fas) receptor/ligand system: death signals and diseases. Cell Death Differ 1996; 3: 159–160.

    Google Scholar 

  30. Dewitt LM, Putney JW Jr. Alpha-adrenergic stimulation of potassium efflux in guinea-pig hepatocytes may involve calcium influx and calcium release. J Physiol 1984; 346: 395–407.

    PubMed  Google Scholar 

  31. Bolton TB, Clapp LH. The diverse effects of noradrenaline and other stimulants on 86Rb and 42K efflux in rabbit and guineapig arterial muscle. J Physiol 1984; 355: 43–63.

    PubMed  Google Scholar 

  32. Castle NA, Haylett DG. Effect of channel blockers on potassium efflux from metabolically exhausted frog skeletal muscle. J Physiol 1987; 383: 31–43.

    PubMed  Google Scholar 

  33. Ashcroft FM, Kakei M, Kelly RP. Rubidium and sodium permeability of the ATP-sensitive K+ channel in single rat pancreatic beta-cells. J Physiol 1989; 408: 413–429.

    PubMed  Google Scholar 

  34. Bortner CD, Cidlowski JA. Caspase independent/dependent regulation ofK+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 1999; 274: 21953–21962.

    PubMed  Google Scholar 

  35. H¨aussinger D, Lang F, Bauers K, Gerok W. Interactions between glutamine metabolism and cell-volume regulation in perfused rat liver. Eur J Biochem 1990; 188: 689–695.

    PubMed  Google Scholar 

  36. van den Dobbelsteen DJ, Nobel CSI, Samuelsson A, Orrenius S, Slater AFG. Glutathione metabolism during apoptosis. In: Montagnier L, Olivier R, Pasquier C, eds. Oxidative Stress, Cancer, AIDS and Neurodegenerative Diseases. New York: Marcel Dekker, 1997: 179–189.

    Google Scholar 

  37. Lang F, Szabo I, Lepple-Wienhues A, Ritter M, Waldegger S, Gulbins E. Cell volume in the regulation of metabolism, cell proliferation and apoptotic cell death. In: Okada Y, ed. Cell Volume Regulation: The Molecular Mechanism and Volume Sensing Machinery. Elsevier Science B.V., 1998: 49–56.

  38. Priestland RN, Whittam R. The temperature dependence of activation by phosphatidylserine of the sodium pump adenosine triphospatase. J Physiol 1972: 220: 353–361.

    PubMed  Google Scholar 

  39. McConkey DJ, Zhivotovsky B, Orrenius S. Apoptosis-molecular mechanisms and biochemical implications. Molecular Aspects of Medicine 1996; 17: 1–110.

    PubMed  Google Scholar 

  40. Bertorello AM, Katz AI. Short-term regulation of renal Na-KATPase activity: physiological relevance and cellular mechanisms. Am J Physiol 1993; 265(6 Pt2): F743–F755.

    PubMed  Google Scholar 

  41. Mashima T, Naito M, Fujita N, Noguchi K, Tsuruo T. Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16–induced U937 apoptosis. Biochem Biophys Res Commun 1995; 217: 1185–1192.

    Article  PubMed  Google Scholar 

  42. Nelson WJ, Shore EM, Wang AZ, Hammerton RW. Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J Cell Biol 1990; 110: 349–357.

    PubMed  Google Scholar 

  43. Larson M, Spring KR. In: Gilles R, Bolls L, Kleinzeller A, eds. Cell Volume Control: Fundamental and Comparative Aspects in Animal Cells. London: Academic Press Inc. Ltd., 1987: 105–123.

    Google Scholar 

  44. Meisenholder GW, Martin SJ, Green DR, Nordberg J, Babior BM, Gottlieb RA. Events in apoptosis. Acidification is downstream of protease activation and Bcl-2 protection. J Biol Chem 1996; 271: 16260–16262.

    PubMed  Google Scholar 

  45. Emoto Y, Manome Y, Meinhardt G, Kisaki H, Kharbanda S, Robertson M, Ghayur T, Kufe D. Proteolytic activation protein kinase C ± by an ICE-like protease in apoptotic cells. EMBO J 1995; 14: 6148–6156.

    PubMed  Google Scholar 

  46. Datta R, Kojima H, Yoshida K, Kufe D. Caspase-3–mediated cleavage of protein kinase C µ in induction of apoptosis. J Biol Chem 1997; 272: 20317–20320.

    PubMed  Google Scholar 

  47. Gilbert M, Knox S. Influence of Bcl-2 overexpression on Na+/K(+)-ATPase pump activity: correlation with radiationinduced programmed cell death. J Cell Physiol 1997; 171: 299–304.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobel, C.S.I., Aronson, J.K., van den Dobbelsteen, D.J. et al. Inhibition of Na+/K+-ATPase may be one mechanism contributing to potassium efflux and cell shrinkage in CD95-induced apoptosis. Apoptosis 5, 153–163 (2000). https://doi.org/10.1023/A:1009684713784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009684713784

Navigation