Skip to main content
Log in

Pore Structure Tailoring of Pillared Clays with Cation Doping Techniques

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Techniques and mechanism of doping controlled amounts of various cations into pillared clays without causing precipitation or damages to the pillared layered structures are reviewed and discussed. Transition metals of great interest in catalysis can be doped in the micropores of pillared clay in ionic forms by a two-step process. The micropore structures and surface nature of pillared clays are altered by the introduced cations, and this results in a significant improvement in adsorption properties of the clays. Adsorption of water, air components and organic vapors on cation-doped pillared clays were studied. The effects of the amount and species of cations on the pore structure and adsorption behavior are discussed. It is demonstrated that the presence of doped Ca2+ ions can effectively aides the control of modification of the pillared clays of large pore openings. Controlled cation doping is a simple and powerful tool for improving the adsorption properties of pillared clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Brindley and R.E. Semples, Clay Miner. 12, 229 (1977).

    Google Scholar 

  2. N. Lahav, U. Shani, and J. Shabtai, Clays and Clay Miner. 26, 107 (1978).

    Google Scholar 

  3. D.E.W. Vaughan, R.J. Lussier, and J.S. Magee, U.S. Patent, 4,176,090 (1979).

  4. R. Burch (ed.), Pillared Clays, Catalysis Today (Elsevier, New York, 1988), vol. 2.

  5. J. Pinnavaia, Science 220, 365 (1983).

    Google Scholar 

  6. R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic, London, 1975).

    Google Scholar 

  7. A. Clearfield, M.E. Kuchenmeister, K. Wade, R. Cahill, and P. Sylvester, Expanded Clays and Other Microporous Solids, edited by M.L. Occelli and H.E. Robson (Van Norstrand Reinhold, New York, 1992), p. 245.

    Google Scholar 

  8. J.J. Fripiat, in Pillared Clays, edited by R. Burch, Catalysis Today, 2, 281 (Elsevier, New York, 1988).

    Google Scholar 

  9. F. Figureas, Catalysis Reviews, Sci. Eng. 30, 457 (1988).

    Google Scholar 

  10. J. Shabtai, M. Rosell, and M. Tokarz, Clays and Clay Miner. 32(2), 99 (1984).

    Google Scholar 

  11. S. Yamanaka, Y. Inoue, M. Hattori, F. Okumura, and M. Yoshikawa, Bull. Chem. Soc. Jpn. 65, 2494 (1992).

    Google Scholar 

  12. J.R. McCauley, Int. Pat. Appl., PCT/US88/00567 (1988), p. 127.

  13. J. Sterte, Clays and Clay Miner. 39(2), 167 (1991).

    Google Scholar 

  14. A. Molinard and E.F. Vansant, Adsorption 1(1), 49 (1995).

    Google Scholar 

  15. D.E.W. Vaughan and R.J. Lussier, in Proc. 5th Int. Conf. on Zeolites, edited by Rees and V.C. Lovat (Heyden, London, 1980), p. 94.

    Google Scholar 

  16. R. Molina, A. Schutz, and G. Poncelet, J. Catalysis 145, 79 (1994).

    Google Scholar 

  17. R. Szostak and C. Ingram, in Catalysis by Microporous Materials, edited by H.K. Beyer, H.G. Karge, I. Kiricsi, and J.B. Nagy, Studies in Surface Science and Catalysis, (Elsevier, New York, 1988), vol. 94, p. 13.

    Google Scholar 

  18. W. Li, M. Sirilumpen, and R.T. Yang, Appl. Catal. B 11, 347 (1997).

    Google Scholar 

  19. M.S. Baksh and R.T. Yang, Ind. Eng. Chem. Res. 31, 2181 (1992).

    Google Scholar 

  20. D.T.B. Tennakoon, W. Jones, and J.M. Thomas, J. Chem. Soc. Faraday Trans. I 82, 3081 (1986).

    Google Scholar 

  21. D.E.W. Vaughan, R.J. Lussier, and J.S. Magee, U.S. Patent, 4,271,043 (1981).

  22. P.B. Malla, S. Yamanaka, and S. Komarneni, Solid State Ionics 32/33, 354 (1989).

    Google Scholar 

  23. S. Yamanaka, P.B. Malla, and S. Komarneni, J. Colloid and Interface Sci. 134, 51 (1990).

    Google Scholar 

  24. P.B. Malla and S. Komarneni, Clays and Clay Miner. 38, 363 (1990).

    Google Scholar 

  25. H.Y. Zhu, W.H. Gao, and E.F. Vansant, J. Colloid and Interface Sci. 171, 377 (1995).

    Google Scholar 

  26. A. Dyer and T. Callardo, in Recent Development in Ion Exchange, edited by P.A. Williams and M.J. Hudson (Elsevier Science Publishers, London, 1990), p. 75.

    Google Scholar 

  27. M.P. Atkins, Pillared Layered Structures, Current Trends and Applications, edited by I.V. Mitchell (Elsevier Applied Science, London, 1990), p. 159.

    Google Scholar 

  28. D. Tichit and F. Figueras, Pillared Layered Structures, Current Trends and Applications, edited by I.V. Mitchell (Elsevier Applied Science, London, 1990), p. 149.

    Google Scholar 

  29. A. Molinard, A. Clearfield, H.Y. Zhu, and E.F. Vansant, Microporous Materials 3, 109 (1994).

    Google Scholar 

  30. A. Molinard, K.K. Peeters, N. Maes, and E.F. Vansant, in Separation Technology, edited by E.F. Vansant (Elsevier Science, Amsterdam, 1994), vol. 11, p. 909.

    Google Scholar 

  31. A. Molinard, P. Cool, and E.F. Vansant, Microporous Materials 3, 149 (1994).

    Google Scholar 

  32. D. Li, A.A. Scala, and Y.H. Ma, Adsorption 2, 227 (1996).

    Google Scholar 

  33. M.L. Occelli and R.M. Tindwa, Clays and Clay Miner. 31, 22 (1983).

    Google Scholar 

  34. M. Tokarz and J. Shabtai, Clays and Clay Miner. 33, 89 (1985).

    Google Scholar 

  35. H.Y. Zhu and S. Yamanaka, Faraday Trans. 93(3), 477 (1997).

    Google Scholar 

  36. H.Y. Zhu, S. Yamanaka, and M. Miyake, Faraday Trans. (1997) submitted.

  37. M.L. Occelli, Ind. Eng. Chem. Prod. Res. Dev. 22, 553 (1983).

    Google Scholar 

  38. D. Plee, A. Schutz, G. Poncelet, and J.J. Fripiat, in Catalysis by Acids and Bases, edited by B. Imelik et al. (Elsevier, Amsterdam, 1985), p. 343.

    Google Scholar 

  39. M. Lenarda, R. Ganzerla, L. Storaro, S. Enzo, and R. Zanoni, J. Mol. Catal. 92(2), 201 (1994).

    Google Scholar 

  40. A. Kostapapas, S.L. Suib, R.W. Coughlin, and M.L. Occelli, in Zeolite: Facts, Figures, Future, edited by P.A. Jacobs and R.A. Van Santen (Elsevier Science Publishers B.V., Amsterdam, 1989), p. 399.

    Google Scholar 

  41. A. Carrado, A. Kostapapas, S.L. Suib, and R.W. Coughlin, Solid State Ionics 22, 117 (1986).

    Google Scholar 

  42. A. Carrado, S.L. Suib, N.D. Skoularikis, and R.W. Coughlin, Inorg. Chem. 25, 4217 (1986).

    Google Scholar 

  43. D. Skoularikis, R.W. Coughlin, A. Kostapapas, K.A. Carrado, and S.L Suib, Applied Catalysis 39, 61 (1988).

    Google Scholar 

  44. J.M. Trillo, M.D. Alba, M.A. Castro, J. Poyato, and M.M. Tobias, J. Materials Sci. 28, 373 (1993).

    Google Scholar 

  45. J. Bousquet, F. Fajula, F. Figueras, C. Gueguen, A. Mattrod Bashi, and D. Tichit, Fr Demande 8515993 (1985).

  46. K. Bahranowski and E.M. Serwicka, Colloid and Surfaces A. Physicochemical and Engineering Aspects 72, 153 (1993).

    Google Scholar 

  47. H.Y. Zhu, J.A. Xia, E.F. Vansant, and G.Q. Lu, J. Porous Materials 4, 17 (1997).

    Google Scholar 

  48. D.W. Breck, Zeolite Molecular Sieves (John Wiley and Sons, New York, 1974), chap. 7.

    Google Scholar 

  49. H.Y. Zhu and S. Yamanaka, in Anual Conference of Japan Clay Society (Kochi, Japan, 1995).

    Google Scholar 

  50. J.M. Comets and L. Kevan, J. Phys. Chem. 97, 12004 (1993).

    Google Scholar 

  51. M. Comets, X. Chen, and L. Kevan, J. Phys. Chem. 97, 8646 (1993).

    Google Scholar 

  52. J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edition (Academic Press, New York, 1982), chap. 5.

    Google Scholar 

  53. H.Y. Zhu, Q. Ma, and G.Q. Lu, J. Porous Materials (1997), in press.

  54. R.T. Yang and M.S.A. Baksh, AIChE J. 37(5), 679 (1991).

    Google Scholar 

  55. H.Y. Zhu, Ph.D. thesis, University of Antwerp, Belgium (1994).

    Google Scholar 

  56. D.W. Breck, Zeolite Molecular Sieves (John Wiley and Sons, New York, 1974), p. 636.

    Google Scholar 

  57. H.Y. Zhu and E.F. Vansant, J. Porous Materials 2, 107 (1995).

    Google Scholar 

  58. H.Y. Zhu, Z.H. Hu, N. Maes, and E.F. Vansant, in Process Technology Proceedings, Separation Technology, edited by E.F. Vansant (Elsevier Science, Amsterdam, 1993), vol. 11, p. 715.

    Google Scholar 

  59. M.L. Occelli, R.A. Innes, F.S.S. Hwu, and J.W. Hightower, Appl. Catal. 14, 69 (1985).

    Google Scholar 

  60. A. Gil and P. Grange, Langmuir 13, 4483 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Lu, G. Pore Structure Tailoring of Pillared Clays with Cation Doping Techniques. Journal of Porous Materials 5, 227–239 (1998). https://doi.org/10.1023/A:1009682221245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009682221245

Navigation