Skip to main content
Log in

Origin of Dissolved Groundwater Sulphate in Coastal Plain Sediments of the Rio de la Plata, Eastern Argentina

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Groundwater of the coastal plain of the Rio de La Plata, Argentina,contains up to 17 g L-1 SO4 and 37 gL-1 TDS. Some of this SO4 is from paleo-seawater intrusion; however, SO4 : Cl ratios can be>2 : 1, and most of the SO4 must, therefore, have another source. Three possible sources were investigated: gypsum, organic matter,and iron sulphides.

Dissolved SO4 showed δ34S valuesfrom -7 to 0‰, typical values for S from iron sulphides or organicmatter, but distinct from that of seawater (+22‰). To test whetherthe SO4 was derived from oxidation of reduced S, four 4-mcores were taken from marine sediments of the coastal plain. Two were takenfrom higher, drier areas where the highest dissolved SO4values were encountered, and two were taken from lower, wetter areas thathad much lower SO4 concentrations. Pore waterSO4, Cl and alkalinity were determined; solids were analyzedfor SO4, sulphide-S and organic-S.

Sulphide-S was the dominant form of reduced S, averaging about0.5% S in the lower interval (2.5–4 m) of the cores. Sulphidewas absent in the upper 2.5 m in both topographically higher and lowerareas. Sulphate was present in the entire unit in the higher, drier areas,but almost absent in lower areas. Organic-S was insignificant.

Our model for the origin of dissolved SO4 is: fine-grainedpyrite was oxidized during hotter or drier periods. Some resulting dissolvedSO4 was precipitated as gypsum. Iron from the pyriteprecipitated as FeOOH. Lower, wetter areas formed over time where recharginggroundwater dissolved most of the gypsum. In higher areas with low hydraulicgradients and high net evapotranspiration, SO4 remained asgypsum and in the dissolved phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre, M.L. (1993) Palaeobiogeography of the Holocene molluscan fauna from northeastern Buenos Aires Province, Argentina: its relation to coastal evolution and sea level changes. Palaeogeography, Palaeoclimatology, Palaeoecology 102, 1–26.

    Article  Google Scholar 

  • Auge, M.P. (1991) Aptitude del agua subterránea en La Plata, Argentina. In Latinoamerica Medio Ambiente y Desarrollo, pp. 191–201. Instituto de Estudios e Investigaciones Sobre el Medio Ambiente.

  • Auge, M.P. and Hernández, M.A. (1983) Características geohidrológicas de un acuífero semiconfinado (Puelche) en la Llanura Bonaerense — su implicancia en el ciclo hidrológico de llanuras dilatadas. Proc. International Colloquium on the Hydrology of Extensive Plains, Buenos Aires, Argentina, Vol. 2, pp. 1021–1042.

    Google Scholar 

  • Berner, E.K. and Berner, R.A. (1996) Global Environment: Water, air, and geochemical cycles. Prentice-Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Berner, R.A. (1970) Sedimentary pyrite formation. Amer. J. Sci. 268, 1–23.

    Article  Google Scholar 

  • Bettany, J.R., Stewart, J.W.B., and Halstead, E.H. (1973) Sulphur fractions and carbon, nitrogen and sulphur relationships in grassland, forest and associated transitional soils. Soil Science Society of America Proc. 37, 915–918.

    Article  Google Scholar 

  • Cappannini, D.A. and Mauriño, V.E. (1960) Suelos de la zona litoral estuârica comprendida entre las ciudades de Buenos Aires al norte y La Plata al sur. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires.

    Google Scholar 

  • Cavallotto, J.L. (1992) Evolución geomorfológica de la llanura costera de la margen sur del Rio de la Plata. Ph.D. dissertation, Univ. Nac. de La Plata, La Plata, Argentina.

    Google Scholar 

  • Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I. (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28, 199–260.

    Article  Google Scholar 

  • Cortelezzi, C.R. and Lerman, J.C. (1971) Estudio de las formaciones marinas de la costa atlántica de la provincia de Buenos Aires. LEMIT (series II), Buenos Aires.

  • Coulter, J.K. (1973) The management of acid sulphate and pseudo-acid sulphate soils for agriculture and other uses. Proc. Intl. Symp. on Acid Sulphate Soils, pp. 255–269.

  • Davidson, W. (1988) Interactions of iron, carbon and sulphur in marine and lacustrine sediments. In Lacustrine Petroleum Source Rocks (ed. A.J. Fleet et al.), Vol. 40, pp. 131–137. Geological Society Special Publication.

  • Elberling, B., Nicholson, R.V., and David, D.J. (1993) Field evaluation of sulphide oxidation rates. Nordic Hydrology 24, 323–338.

    Google Scholar 

  • Francois, R. (1987) A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochim. Cosmochim. Acta 51, 17–27.

    Article  Google Scholar 

  • Fritz, S.J., Bryan, J.D., Harvey, F.E., and Leap, D.I. (1994) A geochemical and isotopic approach to delineate landfill leachates in a RCRA study. Ground Water 32, 743–750.

    Article  Google Scholar 

  • Fry, B., Scanlon, R.S., Winters, J.K., and Parker, P.L. (1982) Sulphur uptake by salt grasses, mangroves and seagrasses in anaerobic sediments. Geochim. Cosmochim. Acta 46, 1121–1124.

    Article  Google Scholar 

  • González Bonorino, F. (1965) Mineralogía de las fracciones arcilla y limo del Pampeano de la Ciudad de Buenos Aires y su significado estratigráfico y sedimentológico. Rev. Asoc. Geol. Arg. 20, 57–120.

    Google Scholar 

  • Gould, W.D., McCready, R.G.L., Rajan, S., and Krouse, H.R. (1990) Stable isotope composition of sulphate produced during bacterial oxidation of various metal sulphides. In Biohydrometallurgy 1989 (ed. J. Salley et al.), pp. 81–92. CANMET, Ottawa, Canada.

    Google Scholar 

  • Hardie, L.A. (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Mineral. 52, 171–200.

    Google Scholar 

  • Hendry, J., Cherry, J.A., and Wallick, E.I. (1986) Origin and distribution of sulphate in a fractured till in southern Alberta, Canada. Water Resources Res. 22, 45–61.

    Google Scholar 

  • Holser, W.T. and Kaplan, I.R. (1966) Isotope geochemistry of sedimentary sulfates. Chem. Geology 1, 93–135.

    Article  Google Scholar 

  • Iriondo, M.H. and García, N.O. (1993) Climatic variations in the Argentine plains during the last 18,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 209–220.

    Article  Google Scholar 

  • Kaplan, I.R. and Rittenberg, S.C. (1964) Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34, 213–217.

    Google Scholar 

  • Logan, W.S. (1993) Origin of the saline groundwater of the coastal plain of the Rio de La Plata, La Plata, Argentina. Ph.D. thesis, University of Waterloo, Waterloo, Canada.

    Google Scholar 

  • Logan, W.S. and Rudolph, D.L. (1997) Microdepression-focused recharge in a coastal wetland, La Plata, Argentina. J. Hydrol. 194, 221–238.

    Article  Google Scholar 

  • Mizutani, Y. and Rafter, T.A. (1973) Isotope behavior of sulfate oxygen in the bacterial reduction of sulfate. Geochem. J. 6, 183–191.

    Google Scholar 

  • Mkumba, J. T. K. (1983) δ 34S and δ 18 O variations in aqueous sulphates in groundwater systems of Winnipeg and Kitchener-Waterloo. M.Sc. thesis, Univ. Waterloo, Waterloo, Canada.

    Google Scholar 

  • Moses, C.O. and Herman, J.S. (1991) Pyrite oxidation at circumneutral pH. Geochim. Cosmochim. Acta 55, 471–482.

    Article  Google Scholar 

  • Neptune, A.M.L., Tabatabai, M.A., and Hanway, J.J. (1975) Sulphur fractions and carbon-nitrogenphosphorus-sulphur relationships in some Brazilian and Iowa soils. Soil Science Society of America Proc. 39, 51–55.

    Article  Google Scholar 

  • Nicholson, R.V., Gillham, R.W., Cherry, J.A., and Reardon, E.J. (1989) Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers. Can. Geotech. J. 26, 1–8.

    Article  Google Scholar 

  • Nielsen, H., Pilot, J., Grinenko, L.N., Grinenko, V.A., Lein, A.Y., Smith, J.M., and Pankina, R.G., 1991, Lithospheric sources of sulphur. In Stable Isotopes — Natural and Anthropogenic Sulphur in the Environment (eds. H.R. Krouse and V.A. Grinenko), pp. 65–132, Wiley, Chichester, UK.

    Google Scholar 

  • Nissenbaum, A. and Kaplan, I.R. (1972) Chemical and isotopic evidence for the in situ origin or marine humic substances. Limnol. Oceanogr. 17, 570–582.

    Article  Google Scholar 

  • Nriagu, J.O., Rees, C.E., Mekhtiyeva, V.L., Lein, A.Y., Fritz, P., Drimmie, R.J., Pankina, R.G., Robinson, B.W., and Krouse, H.R. (1991) Hydrosphere, In Stable Isotopes — Natural and Anthropogenic Sulphur in the Environment (eds. H.R. Krouse and V.A. Grinenko), pp. 177–265, Wiley, Chichester, UK.

    Google Scholar 

  • Parker, G. (1985) El subsuclo del Rio de La Plata. Servicio de Hidrografia Naval Informe Técnico 36/85, Buenos Aires, Argentina.

  • Plummer, L.N., Parkhurst, D.L., Eleming, G.W. and Dunkle, S.A., 1988, A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines. US Geol. Surv. Water-Resourc. Invest. 88-4153.

  • Pons, L.J. (1973) Outline of the genesis, characteristics, classification and improvement of acid sulphate soils. Proc. Intl. Symp. on Acid Sulphate Soils, Waneningen, The Netherlands, pp. 3–26.

  • Rees, C.E. (1978) Sulphur isotope measurements using SO2 and SF6. Geochim. Cosmochim. Acta 42, 377–381.

    Article  Google Scholar 

  • Robertson, W.D., Cherry, J.A., and Schiff, S.L. (1989) Atmospheric sulfur deposition 1950–1985 inferred from sulfate in groundwater. Water Resources Res. 25, 1111–1123.

    Article  Google Scholar 

  • Sala, J.M. (1975) Recursos hidricos (especial mención de las aguas subterráneas). Proc. 6th Cong. Geol. Soc. of Argentina, pp. 169–193.

  • Santa Cruz, J.N. (1972) Estudio sedimentológico de la Formación Puelches en la Provincia de Buenos Aires. Rev. Asoc. Geol. Arg. 27, 5–62.

    Google Scholar 

  • Siever, R. (1962) A squeezer for extracting interstitial water from modern sediments. J. Sed. Pet. 32, 329–331.

    Google Scholar 

  • Teruggi, M.E., Dalla Salda, L., and Dangaus, N. (1974) La presencia de yeso en la Laguna Las Barrancas de Chascomús. Anales LEMIT 267, 123–131.

    Google Scholar 

  • Tuttle, M.L., Goldhaber, M.B., and Williamson, D.L. (1986) An analytical scheme for determining forms of sulphur in oil shales and associated rocks. Talanta 33, 953–961.

    Article  Google Scholar 

  • Van Stempvoort, D.R. and Krouse, H.R. (1994) Controls of δ 18O in sulfate: Review of experimental data and application to specific environments. In Am. Chem. Soc. Symp. Series (eds. C. Alpers and D. Blowes), Vol. 550, pp. 446–480.

  • Van Stempvoort, D.R., Hendry, M.J., Schoenau, J.J., and Krouse, H.R. (1994) Sources and dynamics of sulfur in weathered till, Western Glaciated Plains of North America. Chem. Geology 111, 35–56.

    Article  Google Scholar 

  • Zhabina, N.N. and Volkov, I.I. (1978) A method of determination of various sulphur compounds in sea sediments and rocks. In Environmental Biogeochemistry and Geomicrobiology, Volume 3: Methods, Metals and Assessment (ed. W.E. Krumbein), pp. 735–746. Ann Arbor Sci. Publ., Ann Arbor, Michigan, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, W.S., Nicholson, R.V. Origin of Dissolved Groundwater Sulphate in Coastal Plain Sediments of the Rio de la Plata, Eastern Argentina. Aquatic Geochemistry 3, 305–328 (1997). https://doi.org/10.1023/A:1009680326095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009680326095

Navigation