Skip to main content
Log in

Comparison of the Complexation of Cu and Cd by Humic or Fulvic Acids and by Ligands Observed in Lake Waters

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The complexation of Cu and Cd by ligands observed in filtered unfractionated lakewaters is compared to the complexation by humic and fulvic acids. Complexation parameters (conditional stability constants and ligand concentrations) of Suwannee River fulvic acids (FA), purified peat humic acids (HA) and of ligands in lakewater samples have been determined using the same methods (ligand-exchange and CSV (cathodic stripping voltammetry) or ASV (anodic stripping voltammetry)), and the same titration ranges of Cu, Cd and organic carbon concentrations. The performance of the used techniques is first evaluated in FA and HA suspensions, and gives comparable results with the literature values for the same materials, according to published models (5-site model, NICA model) and parameters. Model calculations using the WHAM model for FA and HA (Tipping, 1994) are also presented. The comparison of titrations of FA and HA with Cu and Cd with those of lakewater samples indicates that stronger ligands than FA and HA are present at low concentrations in the lakewaters. Specific strong ligands occur in particular in eutrophic lake waters, whereas in a lake with higher metal concentrations and low biological productivity the ligands more closely match the fulvic acid characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achterberg, E. P., Van den Berg, C. M. G., Boussemart, M., and Davison, W. (1997) Speciation and cycling of trace metals in Esthwaite Water: A productive English lake with seasonal deep-water anoxia. Geochim. Cosmochim. Acta 61, 5233-5253.

    Google Scholar 

  • Bartschat, B. M., Cabaniss, S. E., and Morel, F. M. M. (1992) Oligoelectrolyte model for cation binding by humic substances. Environ. Sci. Technol. 26(2), 284-294.

    Google Scholar 

  • Benedetti, M. F., Milne, C. J., Kinniburgh, D. G., Van Riemsdijk, W. H., and Koopal, L. K. (1995) Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model. Environ. Sci. Technol. 29, 446-457.

    Google Scholar 

  • Biber M. V., Gülaçar F. O., and Buffle, J. (1996) Seasonal variations in principal groups of organic matter in a eutrophic lake using pyrolysis/GC/MS. Environ, Sci. Technol. 30, 3501-3507.

    Google Scholar 

  • Brand, L. E., Sunda, W. G., and Guillard, R. R. L. (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225-250.

    Google Scholar 

  • Breault, R. F., Colman, J. A., Aiken, G. R., and McKnight, D. (1996) Copper speciation and binding by organic matter in copper-contaminated streamwater. Environ. Sci. Technol. 30, 3477-3486.

    Google Scholar 

  • Bruland, K. W. (1992) Complexation of cadmium by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 37, 1008-1017.

    Google Scholar 

  • Bruland, K. W., Donat, J. R., and Hutchins, D. A. (1991) Interactive influence of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555-1577.

    Google Scholar 

  • Buffle, J. (1988) Complexation Reactions in Aquatic Systems: An Analytical Approach. Ellis Horwood.

  • Buffle, J., Greter F., and Haerdi, W. (1977) Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ion-selective electrodes. Anal. Chim. Acta 118, 29-44.

    Google Scholar 

  • Cabaniss, S. E. and Shuman, M. S. (1988) Copper binding by dissolved organic matter: I. Suwanee River fulvic acid equilibria. Geochim. Cosmochim. Acta 52, 185-193.

    Google Scholar 

  • Campos, M. L. A. L. and Van den Berg, C. M. G. (1994) Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime. Anal. Chim. Acta 284(3), 481-496.

    Google Scholar 

  • Coale, K. H. and Bruland, K. W. (1990) Spatial and temporal variability in copper complexation in the North Pacific. Deep-Sea Res. 37, 317-336.

    Google Scholar 

  • Donat, J. R., Kango, R. A., and Gordon, A. S. (1997) Evaluation of immobilized metal affinity chromatography (IMAC) for isolation and recovery of strong copper-complexing ligands from marine waters. Mar. Chem. 57, 1-10.

    Google Scholar 

  • Donat, J. R., Lao, K. A., and Bruland, K. W. (1994) Speciation of dissolved copper and nickel in South San Francisco Bay: A multimethod approach. Anal. Chim. Acta 284, 547-571.

    Google Scholar 

  • Donat, J. R. and Van den Berg, C. M. G. (1992) A new cathodic stripping voltammetric method for determining organic copper complexation in seawater. Mar. Chem. 38, 69-90.

    Google Scholar 

  • Gordon, A. S., Dyer, B. J., Kango, R. A., and Donat, J. R. (1996) Copper ligands isolated from estuarine water by immobilized metal affinity chromatography: Temporal variability and partial characterization. Mar. Chem. 53, 163-172.

    Google Scholar 

  • Hering, J. G. and Morel, F. M. M. (1988) Humic acid complexation of calcium and copper. Environ. Sci. Technol. 22, 1234-1237.

    Google Scholar 

  • Kinniburgh, D. G., Milne, C. J., Benedetti, M. F., Pinheiro, J. P., Filius, J., Koopal, L. K., and Van Riemsdijk, W. H. (1996) Metal ion binding by humic acid: Application of the NICA-Donnan model. Environ. Sci. Technol. 30, 1687-1698.

    Google Scholar 

  • Knauer, K., Ahner, B., Xue, H. B., and Sigg, L. (1998) Metal and phytochelatin content in phytoplankton from freshwater lakes with different metal concentrations. Environ. Toxicol. Chem. 17, 2444-2452.

    Google Scholar 

  • Leenheer, J. A. (1981) Comprehensive approach to preparative isolation and fraction of dissolved organic carbon from natural water and wastewaters. Environ. Sci. Technol. 15(5), 578-587.

    Google Scholar 

  • Leenheer, J. A., McKnight, D.M., Thurman, E. M., and MacCarthy, P. (1989) Structural components and proposed structural models of fulvic acid from the Suwannee River. In R. C. Averett, J. A. Leenheer, D. M. McKnight, and K. A. Thorn (eds.), Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structures, Vol. Open-File Report 87-557. U.S. Geology Survey, pp. 331-360.

  • Mantoura, R. F. C., Dickson, A., and Riley, J. P. (1978) The complexation of metals with humic materials in natural waters. Estuarine Coastal Mar. Sci. 6, 387-408.

    Google Scholar 

  • McKnight, D. M., Feder, G. L., Thurman, E. M., Wershaw, R. L., and Westall, J. C. (1983) Complexation of copper by aquatic humic substances from different environments. Sci. Total Environ. 28, 65-76.

    Google Scholar 

  • McKnight, D. M. and Wershaw, R. L. (1989) Complexation of copper by fulvic acid from the Suwannee River — Effect of counter-ion concentration. In R. C. Averett, J. A. Leenheer, D. M. McKnight, and K. A. Thorn (eds), Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structures, Vol. USGS Open File Report, 87-557, U.S. Geology Survey, pp. 63-69.

  • Midorikawa, T. and Tanoue, E. (1996) Extraction and characterization of organic ligands from oceanic water columns by immobilized metal ion affinity chromatography. Mar. Chem. 52, 157-171.

    Google Scholar 

  • Milne, C. J., Kinniburgh, D. G., De Wit, J. C. M., Van Riemsdijk, W. H., and Koopal, L. K. (1995) Analysis of proton binding by a peat humic acid using a simple electrostatic model. Geochim. Cosmochim. Acta 59(6), 1101-1112.

    Google Scholar 

  • Moffett, J. W. (1995) Temporal and spatial variability of Cu complexation by strong chelators in the Sargasso Sea. Deep-Sea Res. 42, 1273-1295.

    Google Scholar 

  • Moffett, J.W., Brand, L. E., Croot, P. L., and Barbeau, K. A. (1996) Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol. Oceanogr. 42(5), 789-799.

    Google Scholar 

  • Morel, F. M. M., Hudson, R. J. M., and Price, N. M. (1991) Limitation of productivity by trace metals in the sea. Limnol. Oceanogr. 36, 1742-1755.

    Google Scholar 

  • Muller, F. L. L. (1996) Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters. Mar. Chem. 52, 245-268.

    Google Scholar 

  • Pinheiro, J. P., Mota, A. M., and Gonçalves, M. L. S. (1994) Complexation study of humic acids with cadmium(II) and lead(II). Anal. Chim. Acta 284, 525-537.

    Google Scholar 

  • Sunda, W. G. and Guillard R. R. L. (1976) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res. 34, 511-529.

    Google Scholar 

  • Sunda, W. G. and Huntsman, S. A. (1991) The use of chemiluminescence and ligand competition with EDTA to measure copper concentration and speciation in seawater. Mar. Chem. 36, 137-163.

    Google Scholar 

  • Sunda, W. G. and Huntsman, S. A. (1995) Regulation of copper concentration in the oceanic nutricline by phytoplankton uptake and regeneration cycles. Limnol. Oceanogr. 40, 132-137.

    Google Scholar 

  • Thurman, E. M. (1985) Organic Geochemistry of Natural Water. Kluwer Academic Publishers.

  • Tipping, E. (1994) WHAM — A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput. Geosci. 20(6), 973-1023.

    Google Scholar 

  • Tipping, E. and Hurley, M. A. (1992) A unifying model of cation binding by humic substances. Geochim. Cosmochim. Acta 56, 3627-3641.

    Google Scholar 

  • Turner, D. R., Varney, M. S., Whitfield, M., Mantoura, R. F. C., and Riley, J. P. (1986) Electrochemical studies of copper and lead complexation by fulvic acid. 1. Potentiometric measurements and a critical comparison of metal binding models. Geochim. Cosmochim. Acta 50, 289-297.

    Google Scholar 

  • Van den Berg, C. M. G. (1984) Determination of copper in sea water by cathodic stripping voltammetry of complexes with catechol. Anal. Chim. Acta 164, 195-207.

    Google Scholar 

  • Voelker, B. M. and Sulzberger, B. (1996). Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ. Sci. Technol. 30, 1106-1114.

    Google Scholar 

  • Westall, J. C. (1982) FITEQL, A Program for the Determination of Chemical Equilibrium Constants from Experimental Data. Chemistry Department, Oregon State University.

  • Xue, H. B., Oestreich, A., Kistler, D., and Sigg, L. (1996) Free cupric ion concentrations and Cu complexation in selected Swiss lakes and rivers. Aquat. Sci. 58, 69-87.

    Google Scholar 

  • Xue, H. B. and Sigg, L. (1993) Free cupric ion concentration and Cu(II) speciation in a eutrophic lake. Limnol. Oceanogr. 38, 1200-1213.

    Google Scholar 

  • Xue, H. B. and Sigg, L. (1998) Cd speciation and complexation by natural organic ligands in freshwater. Anal. Chim. Acta 363(3), 249-259.

    Google Scholar 

  • Xue, H. B. and Sunda, W. G. (1997) Comparison of [Cu2+] measurements in lake water determined by ligand exchange and cathodic stripping voltammetry and by ion-selective electrode. Environ. Sci. Technol. 31, 1902-1909.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, H., Sigg, L. Comparison of the Complexation of Cu and Cd by Humic or Fulvic Acids and by Ligands Observed in Lake Waters. Aquatic Geochemistry 5, 313–335 (1999). https://doi.org/10.1023/A:1009679819002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009679819002

Navigation