Skip to main content

Advertisement

Log in

Remineralization Ratios in the Subtropical North Pacific Gyre

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Based on a new mixing model of two end-members, the water column remineralization ratios of P/N/Corg - O2 = 1/13 ± 1/135 ± 18/170 ± 9 are obtained for the Hawaii Ocean Time-series (HOT) data set at station ALOHA. The traditional Redfield ratios of P/N/Corg/–O2 = 1/16/106/138 have standard deviations of more than 50%, when they are based on the average composition of phytoplankton. Apparently, the remineralization processes in the water column have smoothed out the observed large variability of plankton compositions. A new molar formula for the remineralized plankton may be written as 135H280O105N13P or C25(CH2O)101(CH4)9(NH3)13(H3PO4). Oxidation of this formula results in

C25(CH2O)101(CH4)9(NH3)13(H3PO4) + 170O2 → 135CO2 + 132H2O + 13NO3 - + H2PO4 - + 14H+.

For comparison, remineralization using Redfield's formula gives:

(CH2O)106(NH3)16(H3PO4) + 138O2 → 106CO2 + 122H2O + 16NO3 -+ H2PO4 - + 17H+

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, L. A. and Sarmiento, J. L. (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem.Cycles 8, 65–80.

    Google Scholar 

  • Anderson, L. A. (1995) On the hydrogen and oxygen content of marine phytoplankton. Deep Sea Res.Part 1 42, 1675–1680.

    Google Scholar 

  • Bingham, F. M. and Lukas, R. (1996) Seasonal cycles of temperature, salinity and dissolved oxygen observed in the Hawaii Ocean Time-series. Deep Sea Res.43, 199–214.

    Google Scholar 

  • Boulahdid, M. and Minster, J. F. (1989) Oxygen consumption and nutrient regeneration ratios along isopycnal horizons in the Pacific Ocean. Mar.Chem.26, 133–153.

    Google Scholar 

  • Brewer, P. G., Wong, G. T. F., Bacon, M. P., and Spencer, D.W. (1975) An oceanic calcium problem? Earth Planet.Sci.Lett.26, 81–87.

    Google Scholar 

  • Broecker, W. S. (1974) 'NO' as a conservative water-mass tracer. Earth Planet.Sci.Lett.23,100–107.

    Google Scholar 

  • Broecker, W. S., Takahashi, T., and Takahashi, T. (1985) Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration. J. Geophys.Res.90, 6925–6939.

    Google Scholar 

  • Chen, C. T. A. and Pytkowicz, R. M. (1979) On the total CO2-titration alkalinity-oxygen system in the Pacific Ocean. Nature 281, 362–365.

    Google Scholar 

  • Chen, C. T. A. (1982) Oceanic penetration of excess CO2 in a cross section between Alaska and Hawaii. Geophys.Res.Lett.9, 117–119.

    Google Scholar 

  • Christian, J. R., Lewis, M. R., and Karl, D. M. (1997) Vertical fluxes of carbon, nitrogen and phosphorus in the north Pacific subtropical gyre near Hawaii. J.Geophys.Res.102(C7), 15667–15677.

    Google Scholar 

  • Duarte, C.M. (1992) Nutrient concentration of aquatic plants: Patterns across species. Limnol.Oceanogr.37, 882–889.

    Google Scholar 

  • Emerson, S. and Hayward, T. (1995) Chemical tracers of biological processes in shallow waters of the North Pacific: Preformed nitrate distributions. J.Mar.Res.53, 499–513.

    Google Scholar 

  • Fiadeiro, M. and Craig, H. (1978) Three dimensional modeling of tracers in the deep Pacific Ocean, I. Salinity and oxygen. J.Mar.Res. 36, 323–355.

    Google Scholar 

  • Fleming, R. H. (1940) Composition of plankton and units for reporting populations and production. Proc.Sixth Pacific Sci.Congr.3, 535–540.

    Google Scholar 

  • Goldman, J. C., McCarthy, J. J., and Peavey, D. G. (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279, 210–215.

    Google Scholar 

  • Gruber, N., Sarmiento, J. L., and Stocker, T. F. (1996) An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem.Cycles 10, 809–837.

    Google Scholar 

  • Karl, D. M., Tien, G., Dore, J., and Winn, C. D. (1993) Total dissolved nitrogen and phosphorus concentrations at US JGOFS Station ALOHA: Redfield reconciliation. Mar.Chem.41, 203–208.

    Google Scholar 

  • Karl, D.M., Letelier, R., Hebel, D., Tupas, L., Dore, J., Christian, J., and Winn, C. (1995) Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–92 El Nino. Nature 373, 230–234.

    Google Scholar 

  • Karl, D. M. and Lukas, R. (1996) The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation. Deep Sea Res.43, 129–156.

    Google Scholar 

  • Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., and Hebel, D. (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388, 533–538.

    Google Scholar 

  • Kennan, S. C. and Lukas, R. (1996) Saline intrusions in the intermediate waters north of Oahu, Hawaii. Deep Sea Res.43, 215–242.

    Google Scholar 

  • Lukas, R. and Santiago-Mandujano, F. (1996) Interannual variability of Pacific deep-and bottomwaters observed in the Hawaii Ocean Time-series. Deep Sea Res.43, 243–256.

    Google Scholar 

  • Minster, J. F. and Boulahdid, M. (1987) Redfield ratios along isopycnal surfaces-A complementary study. Deep Sea Res.34, 1981–2003.

    Google Scholar 

  • Peng, T. H. and Broecker, W. S. (1987) C/P ratios in marine detritus. Global Biogeochem.Cycles 1, 155–161.

    Google Scholar 

  • Redfield, A. C., Ketchum, B. H., and Richards, F. A. (1963) The influence of organisms on the composition of sea-water. In The Sea, vol. 2(ed. M. N. Hill), pp. 26–77. Interscience, New York.

    Google Scholar 

  • Sabine, C. L., Mackenzie, F. T., Winn, C., and Karl, D. M. (1995) Geochemistry of carbon dioxide in seawater at the Hawaii Ocean Time series station, ALOHA. Global Biogeochem.Cycles 9, 637–651.

    Google Scholar 

  • Takahashi, T., Broecker, W. S., and Langer, S. (1985) Redfield ratio based on chemical data from isopycnal surfaces. J.Geophys.Res.90, 6907–6924.

    Google Scholar 

  • Talley, L. D. (1985) Ventilation of the Subtropical North Pacific: The shallow salinity minimum. J. Phys.Oceanog.15, 633–649.

    Google Scholar 

  • Talley, L. D., Nagata, Y., Fujimura, M., Iwao, T., Kono, T., Inagake, D., Hirai, M., and Okuda, K. (1995) North Pacific Intermediate Water in the Kuroshio/Oyashio mixed water region. J.Phys. Oceanog.25, 475–501.

    Google Scholar 

  • Tarantola, A. and Valette, B. 1982. Generalized nonlinear inverse problems solved using the least squares criterion. Rev.Geophys.Space Phys.20, 219–232.

    Google Scholar 

  • Troy, P. J., Li, Y. H., and Mackenzie, F. T. (1997) Changes in surface morphology of calcite exposed to the oceanic water column. Aquatic Geochemistry 3, 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YH., Karl, D.M., Winn, C.D. et al. Remineralization Ratios in the Subtropical North Pacific Gyre. Aquatic Geochemistry 6, 65–85 (2000). https://doi.org/10.1023/A:1009676300859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009676300859

Navigation