Skip to main content

Sulphur Enrichment in Organic Matter of Eastern Mediterranean Sapropels: A Study of Sulphur Isotope Partitioning

Abstract

Sulphur isotope compositions and S/C ratios of organic matter were analysed in detail by combustion-isotope ratio monitoring mass spectrometry (C-irmMS) in eastern Mediterranean sediments containing three sapropels of different ages and with different organic carbon contents (sapropel S1 in core UM26, formed from 5–9 ka ago with a maximum organic carbon content of 2.3 wt%; sapropel 967 from ODP Site 160-967C, with an age of 1.8 Ma and a maximum organic carbon content of 7.4 wt%; and sapropel 969 from ODP Site 160-969E, with an age of 2.9 Ma and a maximum organic carbon content of 23.5 wt%). Sulphur isotopic compositions (δ34S) of the organic matter ranged from -29.5 to +15.8‰ and the atomic S/C ratio was 0.005 to 0.038. The organic sulphur in the sediments is a mixture of sulphur derived from (1) incorporation of 34S-depleted inorganic reduced sulphur produced by dissimilatory microbial sulphate reduction; and (2) biosynthetic sulphur with an isotopic signature close to seawater sulphate. The calculated biosynthetic fraction of organic sulphur in non-sapropelic sediments ranges from 68–87%. The biosynthetic fraction of the organic sulphur of the sapropels (60–22%) decreases with increasing organic carbon content of the sapropels. We propose that uptake of reduced sulphur into organic matter predominantly took place within sapropels where pyrite formation was iron-limited and thus an excess of dissolved sulphide was present for certain periods of time. Simultaneously, sulphide escaped into the bottom water and into sediments below the sapropels where pyrite formation occurred.

This is a preview of subscription content, access via your institution.

References

  • Anderson, T. F. and Pratt, L. M. (1995) Isotopic evidence for the origin of organic sulfur and elemental sulfur in marine sediments. In Geochemical Transformations of Sedimentary Sulfur (eds. M. A Vairavamurthy and M. A. A. Schoonen), Amer. Chem. Soc. Symp. Series, Vol. 612, pp. 378-396. American Chemical Society, Washington D.C.

    Google Scholar 

  • Bein, A., Almogi-Labin, A., and Sass, E. (1990) Sulfur sinks and organic carbon relationships in Cretaceous organic-rich carbonates: implications for evaluation of oxygen-poor depositional environments. Amer. J. Sci. 290, 882-911.

    Google Scholar 

  • Böttcher, M. E., Rusch, A., Höpner, T., and Brumsack H.-J. (1997) Stable sulfur isotope effects related to local intense sulfate reduction in a tidal sandflat (Southern North Sea): results from loading experiments. Isotopes Environm. Health Stud. 33, 109-129.

    Google Scholar 

  • Böttcher, M. E., Brumsack, H.-J., and de Lange, G. J. (1998a) Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the eastern Mediterranean (Leg 160). In Proc. ODP, Sci. Results, 160 (eds. A. H. F. Robertson et al.), pp. 365-373. College Station, TX, ODP.

    Google Scholar 

  • Böttcher, M. E., Oelschläger, B., Höpner, T., Brumsack, H.-J., and Rullkötter, J. (1998b) Sulfate reduction related to the early diagenetic degradation of organic matter and black spot formation in tidal sand flats: Stable isotope (13C, 34S, 18O) and other geochemical results. Org. Geochem., in press.

  • Brüchert, V. and Pratt, L. M. (1996) Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA. Geochim. Cosmochim. Acta 60, 2325-2332.

    Google Scholar 

  • Calvert, S. E., Nielsen, B., and Fontugne, M. R. (1992) Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature 359, 223-225.

    Google Scholar 

  • Canfield, D. E. (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res. 36, 121-138.

    Google Scholar 

  • Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., and Berner, R. A. (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149-155.

    Google Scholar 

  • Casagrande, D. J., Idowu, G., Friedman, A., Rickert, P., Siefert, K., and Schlenz, D. (1979) H2S incorporation in coal precursors: origins of organic sulphur in coal. Nature 282, 599-600.

    Google Scholar 

  • Chambers, L. A. and Trudinger, P. A. (1979) Microbiological fractionation of stable sulur isotopes: a review and critique. Geomicrobiol. J. 1, 249-293.

    Google Scholar 

  • de Lange, G. J., Middelburg, J. J., van der Weijden, C. H., Catalano, G., Luther, G.W., III, Hydes, D. J., Woittiez, J. R. W., and Klinkhammer, G. P. (1990a) Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean. Mar. Chem. 31, 63-88.

    Google Scholar 

  • de Lange, G. J., Boelrijk, N. A. I. M., Catalano, G., Corselli, C., Klinkhammer, G. P., Middelburg, J. J., Müller, D. W., Ullman, W. J., van Gaans, P., Woittiez, J. R. W. (1990b) Sulphate-related equilibria in the hypersaline brines of the Tyro and Bannock Basins, eastern Mediterranean. Mar. Chem. 31, 89-112.

    Google Scholar 

  • de Lange, G. J. (1992) Shipboard routine and pressure filtration system for pore-water extraction from suboxic sediments. Mar. Geol. 109, 77-81.

    Google Scholar 

  • Emeis, K.-C., Robertson, A. H. F, Richter, C. et al. (1996) Proc. ODP, Init. Repts., 160. College Station, TX, ODP.

    Google Scholar 

  • Ferdelman, T. G., Church, T.M., and Luther, G.W., III (1991) Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geochim. Cosmochim. Acta 50, 979-988.

    Google Scholar 

  • Francois, R. (1987a) A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochim. Cosmochim. Acta 51, 17-27.

    Google Scholar 

  • Francois, R. (1987b) A study of the extraction conditions of sedimentary humic acids to estimate their true in situ sulfur content. Limnol. Oceanogr. 32, 964-972.

    Google Scholar 

  • Fry, B. (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33, 1182-1190.

    Google Scholar 

  • Hartgers, W. A., Lòpez, J. F., Sinninghe Damsté, J. S., Reiss, C., Maxwell, J. R., and Grimalt, J. O. (1997) Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds. Geochim. Cosmochim. Acta 61, 4769-4788.

    Google Scholar 

  • Henneke, E., Luther, G. W., III, de Lange, G., J., and Hoefs, J. (1997) Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochim. Cosmochim. Acta 61, 307-321.

    Google Scholar 

  • Higgs, N. C., Thomson, J., Wilson, T. R. S., and Croudace, I. W. (1994) Modification and complete removal of eastern Mediterranean sapropels by postdepositional oxidation. Geology 22, 423-426.

    Google Scholar 

  • Kaplan, I. R., Emery, K. O., and Rittenberg, S. C. (1963). The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim. Cosmochim. Acta 27, 297-331.

    Google Scholar 

  • Kohnen, M. E. L., Sinninghe Damsté, J. S., ten Haven, H. L., and de Leeuw, J. W. (1989) Early incorporation of polysulphides in sedimentary organic matter. Nature 341, 640-641.

    Google Scholar 

  • Mango, F. D. (1983) The diagenesis of carbohydrates by hydrogen sulfide. Geochim. Cosmochim. Acta 47, 1433-1441.

    Google Scholar 

  • Mossmann, J.-R., Aplin, A. C., Curtis, C. D., and Coleman, M. L. (1990) Sulfur geochemistry at Sites 680 and 686 on the Peru Margin. In Proc. ODP, Sci. Results, 112 (eds. E. Suess et al.), pp. 455-464. College Station, TX, ODP.

    Google Scholar 

  • Mossmann, J.-R., Aplin, A. C. Curtis, C. D., and Coleman, M. L. (1991). Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru Margin. Geochim. Cosmochim. Acta 55, 3581-3595.

    Google Scholar 

  • Nissenbaum, A. and Kaplan, I. R. (1972) Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol. Oceanogr. 17, 570-582.

    Google Scholar 

  • Passier, H. F. and de Lange, G. J. (1998) Sedimentary sulfur and iron chemistry in relation to the formation of Eastern Mediterranean sapropels. In Proc. ODP, Sci. Results, 160 (eds. A. H. F Robertson et al.), pp. 249-259. College Station, TX, ODP.

    Google Scholar 

  • Passier, H. F, Middelburg, J. J., van Os, B. J. H., and de Lange, G. J. (1996) Diagenetic pyritisation under eastern Mediterranean sapropels caused by downward sulfide diffusion. Geochim. Cosmochim. Acta 60, 751-763.

    Google Scholar 

  • Passier, H. F., Middelburg, J. J., de Lange, G. J., and Böttcher, M. E. (1997) Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology 25, 519-522.

    Google Scholar 

  • Passier, H. F., Middelburg, J. J., de Lange, G. J., and Böttcher, M. E. (1998) Modes of sapropel formation in the eastern Mediterranean: some constraints based on pyrite properties. Mar. Geol., in press.

  • Peterson, B. J. and Howarth, R.W. (1987) Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnol. Oceanogr. 32, 1195-1213.

    Google Scholar 

  • Philp, R. P., Suzuki, N., and Galvez-Sinibaldi, A. (1992) Early-stage incorporation of sulfur into protokerogens and possible kerogen precursors. In Productivity, Accumulation, and Preservation in Recent and Ancient Sediments (eds. J. Whelan and J. W. Farrington), pp. 264-282. Columbia University Press, New York.

    Google Scholar 

  • Price, F. T. and Shieh, Y. N. (1979) Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures. Chem. Geol. 27, 245-253.

    Google Scholar 

  • Raiswell, R., Bottrell, S. H., Al-Biatty, H. J., and Tan, M., MD. (1993) The influence of bottom water oxygenation and reactive iron content on sulfur incorporation into bitumens from Jurassic marine shales. Amer. J. Sci. 293, 569-596.

    Google Scholar 

  • Rohling, E. J. (1994) Review and new aspects concerning the formation of eastern Mediterranean sapropels. Mar. Geol. 122, 1-22.

    Google Scholar 

  • Rossignol-Strick, M., Nesteroff, W., Olive, P., and Vergnaud-Grazzini, C. (1982) After the deluge: Mediterranean stagnation and sapropel formation. Nature 295, 105-110.

    Google Scholar 

  • Sinninghe Damsté, J. S. and de Leeuw, J.W. (1990) Analysis, structure and geochemical significance of organically-bound sulfur in the geosphere: state of the art and future research. Org. Geochem. 16, 1077-1101.

    Google Scholar 

  • van Santvoort, P. J. M., de Lange, G. J., Thomson, J., Cussen, H., Wilson, T. R. S., Krom, M. D., and Ströhle, K. (1996) Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean. Geochim. Cosmochim. Acta 60, 4007-4024.

    Google Scholar 

  • Zhabina, N. N. and Volkov, I. I. (1978) A method of determination of various sulfur compounds in sea sediments and rocks. In Environmental Biogeochemistry and Geomicrobiology (ed. W. E. Krumbein), Vol. 3, Methods, Metals and Assessment, pp. 735-746. Ann Arbor Sci., Ann Arbor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Passier, H.F., Böttcher, M.E. & Lange, G.J.D. Sulphur Enrichment in Organic Matter of Eastern Mediterranean Sapropels: A Study of Sulphur Isotope Partitioning. Aquatic Geochemistry 5, 99–118 (1999). https://doi.org/10.1023/A:1009676107330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009676107330

  • Eastern Mediterranean
  • sapropel
  • organic sulphur
  • sulphur isotopes
  • C-irmMS
  • pyrite