Skip to main content
Log in

The role of radiation-induced apoptosis as a determinant of tumor responses to radiation therapy

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ionizing radiation is an effective means of killing tumor cells. Approximately 50% of all American cancer patients are treated with radiotherapy at some time during the course of their disease, making radiation one of the most widely used cytotoxic therapies. Currently, much effort is focused on understanding the molecular pathways that regulate tumor cell survival following radiotherapy, with the long term goal of developing novel therapeutic strategies for specifically sensitizing tumors to radiation. At present, there is particular interest in the role of tumor cell apoptotic potential as a regulator of both intrinsic and extrinsic determinants of the response of tumors to radiation therapy. Here we review what is currently known about the role of apoptosis as a mechanism of tumor cell killing by ionizing radiation and the relative contribution of apoptosis to cellular radiosensitivity and the ability to control human cancers using radiotherapy. The following topics will be discussed: (1) radiation-induced apoptosis in normal and malignant cells, (2) clinical findings with respect to apoptosis in human cancers treated with radiotherapy, (3) the contribution of apoptosis to intrinsic radiosensitivity in vitro, (4) the relevance of apoptosis to treatment outcome in experimental tumor models in vivo and (5) the potential of exploiting apoptosis as a means to improve the therapeutic efficacy of radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lichter AS, Lawrence TS. Recent advances in radiation oncology. N Engl J Med 1995; 332: 371–379.

    Google Scholar 

  2. Peters LJ, Brock WA, Johnson T, et al. Potential methods for predicting tumor radiocurability. Int J Radiat Oncol Biol Phys 1986; 12: 459–567.

    Google Scholar 

  3. Brock WA, Geara F. Variations in tumor and normal cell radiosensitivity: possible implications for radiotherapy. Cancer Bull 1992; 44: 117–123.

    Google Scholar 

  4. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    Google Scholar 

  5. Isaacs JT. Role of programmed cell death in carcinogenesis. Environ Health Perspect 1993; 101(Suppl 5): 27–33.

    Google Scholar 

  6. Chiarugi V, Ruggiero M. Role of three cancer “master genes” p53, bcl2 and c-myc on the apoptotic process. Tumori 1996; 82: 205–209.

    Google Scholar 

  7. Evan G. Cancer—a matter of life and cell death. Int J Cancer 1997; 71: 709–711.

    Google Scholar 

  8. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Google Scholar 

  9. Hunter T. Oncoprotein networks. Cell 1997; 88: 333–346.

    Google Scholar 

  10. Warters RL, Hofer KG, Harris CR, Smith JM. Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage. Curr Top Radiat Res Q 1978; 12: 389–407.

    Google Scholar 

  11. Szumiel I. Ionizing radiation-induced cell death. Int J Radiat Biol 1994; 66: 329–341.

    Google Scholar 

  12. Puck TT, Marcus PI. Action of X-rays on mammailian cells. J Exp Med 1956; 103: 653–666.

    Google Scholar 

  13. Coleman CN. Beneficial liaisons: radiobiology meets cellular and molecular biology. Radiother Oncol 1993; 28: 1–15.

    Google Scholar 

  14. Wyllie AH. The biology of cell death in tumours. Anticancer Res 1985; 5: 131–136.

    Google Scholar 

  15. Sarraf CE, Bowen ID. Proportions of mitotic and apoptotic cells in a range of untreated experimental tumours. Cell Tissue Kinet 1988; 21: 45–49.

    Google Scholar 

  16. Denekamp J. The cellular proliferation kinetics of animal tumors. Cancer Res 1970; 30: 393–400.

    Google Scholar 

  17. Denekamp J. The relationship between the ‘cell loss factor’ and the immediate response to radiation in animal tumours. Eur J Cancer 1972; 8: 335–340.

    Google Scholar 

  18. Sarraf CE, Bowen ID. Kinetic studies on a murine sarcoma and an analysis of apoptosis. Br J Cancer 1986; 54: 989–998.

    Google Scholar 

  19. Arends MJ, McGregor AH, Wyllie AH. Apoptosis is inversely related to necrosis and determines net growth in tumors bearing constitutively expressed myc, ras, and HPV oncogenes. Am J Pathol 1994; 144: 1045–1057.

    Google Scholar 

  20. Jacobson MD, Raff MC. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 1995; 374: 814–816.

    Google Scholar 

  21. Shimizu S, Eguchi Y, Kosaka H, et al. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 1995; 374: 811–813.

    Google Scholar 

  22. Gilbert MS, Rupnow BA, Ramirez DA, Trisler KD, Knox SJ. Over-expression of Bcl-2 protects against apoptosis induced by the bioreductive cytotoxic drug SR4233 (Tirapazamine). Cell Death Differ 1996; 3: 215–222.

    Google Scholar 

  23. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.

    Google Scholar 

  24. Alarcon RM, Rupnow BA, Graeber TG, Knox SJ, Giaccia AJ. Modulation of c-Myc activity and apoptosis in vivo. Cancer Res 1996; 56: 4315–4319.

    Google Scholar 

  25. Rupnow BA, Alarcon RM, Giaccia AJ, Knox SJ. p53 mediates apoptosis induced by c-Myc activation in hypoxic or gamma irradiated fibroblasts. Cell Death Differ 1998; 5: 141–147.

    Google Scholar 

  26. McLaughlin KA, Osborne BA, Goldsby RA. The role of oxygen in thymocyte apoptosis. Eur J Immunol 1996; 26: 1170–1174.

    Google Scholar 

  27. Schrek R. Cinemicrographic observations and theoretical considerations on reactions of lymphocytes to X-rays. Radiology 1955; 65: 912–919.

    Google Scholar 

  28. Cole LJ, Ellis ME. Radiation-induced changes in tissue nucleic acids: release of soluble deoxynucleotides in the spleen. Radiat Res 1957; 7: 508–517.

    Google Scholar 

  29. Hendry JH, Potten CS, Chadwick C, Bianchi M. Cell death (apoptosis) in the mouse small intestine after low doses: effects of dose-rate, 14.7 MeV neutrons, and 600 MeV (maximum energy) neutrons. Int J Radiat Biol Relat Stud Phys Chem Med 1982; 42: 611–620.

    Google Scholar 

  30. Stephens LC, King GK, Peters LJ, et al. Acute and late radiation injury in rhesus monkey parotid glands. Evidence of interphase cell death. Am J Pathol 1986; 124: 469–478.

    Google Scholar 

  31. Yamada T, Ohyama H, Kinjo Y, Watanabe M. Evidence for the internucleosomal breakage of chromatin in rat thymocytes irradiated in vitro. Radiat Res 1981; 85: 544–553.

    Google Scholar 

  32. Sellins KS, Cohen JJ. Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 1987; 139: 3199–3206.

    Google Scholar 

  33. Yamada T, Ohyama H. Radiation-induced interphase death of rat thymocytes is internally programmed (apoptosis). Int J Radiat Biol Relat Stud Phys Chem Med 1988; 53: 65–75.

    Google Scholar 

  34. Stephens LC, Schultheiss TE, Kian Ang K, Peters LJ. Pathogenesis of radiation injury to the salivary glands and potential methods of protection. Cancer Bull 1989; 41: 106–114.

    Google Scholar 

  35. Potten CS. The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice. Cancer Metastasis Rev 1992; 11: 179–195.

    Google Scholar 

  36. Pena JC, Fuchs E, Thompson CB. Bcl-x expression influences keratinocyte cell survival but not terminal differentiation. Cell Growth Differ 1997; 8: 619–629.

    Google Scholar 

  37. Kitada S, Krajewski S, Miyashita T, Krajewska M, Reed JC. Gamma-radiation induces upregulation of Bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 1996; 12: 187–192.

    Google Scholar 

  38. Hickman JA. Apoptosis and chemotherapy resistance. European Journal of Cancer 1996; 32A: 921–926.

    Google Scholar 

  39. Dive C, Hickman JA. Drug-target interactions: only the first step in the commitment to a programmed cell death? Br J Cancer 1991; 64: 192–196.

    Google Scholar 

  40. Hickman JA. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 1992; 11: 121–139.

    Google Scholar 

  41. Stephens LC, Ang KK, Schultheiss TE, Milas L, Meyn RE. Apoptosis in irradiated murine tumors. Radiat Res 1991; 127: 308–316.

    Google Scholar 

  42. Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 1994; 78: 539–542.

    Google Scholar 

  43. Clutton S. The importance of oxidative stress in apoptosis. Br Med Bull 1997; 53: 662–668.

    Google Scholar 

  44. Raff MC. Social controls on cell survival and cell death. Nature 1992; 356: 397–400.

    Google Scholar 

  45. Iwata M, Ohoka Y, Kuwata T, Asada A. Regulation of T cell apoptosis via T cell receptors and steroid receptors. Stem Cells 1996; 14: 632–641.

    Google Scholar 

  46. Nagata S. Fas-induced apoptosis. Intern Med 1998; 37: 179–181.

    Google Scholar 

  47. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998; 60: 619–642.

    Google Scholar 

  48. Warters RL. Radiation-induced apoptosis in a murine T-cell hybridoma. Cancer Res 1992; 52: 883–890.

    Google Scholar 

  49. Radford IR. Mouse lymphoma cells that undergo interphase death show markedly increased sensitivity to radiation-induced DNA double-strand breakage as compared with cells that undergo mitotic death. Int J Radiat Biol 1991; 59: 1353–1369.

    Google Scholar 

  50. Radford IR. Radiation response of mouse lymphoid and myeloid cell lines. Part I. Sensitivity to killing by ionizing radiation, rate of loss of viability, and cell type of origin. Int J Radiat Biol 1994; 65: 203–215.

    Google Scholar 

  51. Warters RL, Hofer KG. Radionuclide toxicity in cultured mammalian cells. Elucidation of the primary site for radiation-induced division delay. Radiat Res 1977; 69: 348–358.

    Google Scholar 

  52. Ramakrishnan N, McClain DE, Catravas GN. Membranes as sensitive targets in thymocyte apoptosis. Int J Radiat Biol 1993; 63: 693–701.

    Google Scholar 

  53. Gilbert MS, Saad AH, Rupnow BA, Knox SJ. Association of BCL-2 with membrane hyperpolarization and radioresistance. J Cell Physiol 1996; 168: 114–122.

    Google Scholar 

  54. Gilbert M, Knox S. Influence of Bcl-2 overexpression on Na+/K(+)-ATPase pump activity: correlation with radiation-induced programmed cell death. J Cell Physiol 1997; 171: 299–304.

    Google Scholar 

  55. Haimovitz-Friedman A, Kan CC, Ehleiter D, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994; 180: 525–535.

    Google Scholar 

  56. Verheij M, Bose R, Lin XH, et al. Requirement for ceramideinitiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996; 380: 75–79.

    Google Scholar 

  57. Santana P, Peña LA, Haimovitz-Friedman A, et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 1996; 86: 189–199.

    Google Scholar 

  58. Michael JM, Lavin MF, Watters DJ. Resistance to radiation-induced apoptosis in Burkitt's lymphoma cells is associated with defective ceramide signaling. Cancer Res 1997; 57: 3600–3605.

    Google Scholar 

  59. Chmura SJ, Nodzenski E, Beckett MA, et al. Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res 1997; 57: 1270–1275.

    Google Scholar 

  60. Reap EA, Roof K, Maynor K, et al. Radiation and stress-induced apoptosis: a role for Fas/Fas ligand interactions. Proc Natl Acad Sci USA 1997; 94: 5750–5755.

    Google Scholar 

  61. Sheard MA, Vojtesek B, Janakova L, Kovarik J, Zaloudik J. Up-regulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. Int J Cancer 1997; 73: 757–762.

    Google Scholar 

  62. Hallahan DE, Sukhatme VP, Sherman ML, et al. Protein kinase C mediates X-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc Natl Acad Sci USA 1991; 88: 2156–2160.

    Google Scholar 

  63. Uckun FM, Tuel-Ahlgren L, Song CW, et al. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death. Proc Natl Acad Sci USA 1992; 89: 9005–9009.

    Google Scholar 

  64. Findik D, Song Q, Hidaka H, Lavin M. Protein kinase A inhibitors enhance radiation-induced apoptosis. J Cell Biochem 1995; 57: 12–21.

    Google Scholar 

  65. Wang CY, Mayo MW, Baldwin AS, Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996; 274: 784–787.

    Google Scholar 

  66. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; 268: 1749–1753.

    Google Scholar 

  67. Weichselbaum RR, Hallahan D, Fuks Z, Kufe D. Radiation induction of immediate early genes: effectors of the radiation-stress response. Int J Radiat Oncol Biol Phys 1994; 30: 229–234.

    Google Scholar 

  68. Lee JM, Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci USA 1993; 90: 5742–5746.

    Google Scholar 

  69. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–849.

    Google Scholar 

  70. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    Google Scholar 

  71. Clarke AR, Purdie CA, Harrison DJ, et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–852.

    Google Scholar 

  72. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10: 1054–1072.

    Google Scholar 

  73. Xia F, Wang X, Wang YH, et al. Altered p53 status correlates with differences in sensitivity to radiation-induced mutation and apoptosis in two closely related human lymphoblast lines. Cancer Res 1995; 55: 12–15.

    Google Scholar 

  74. Ford JM, Hanawalt PC. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci USA 1995; 92: 8876–8880.

    Google Scholar 

  75. Xia F, Liber HL. The tumor suppressor p53 modifies mutational processes in a human lymphoblastoid cell line. Mutat Res 1997; 373: 87–97.

    Google Scholar 

  76. Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Google Scholar 

  77. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997; 3: 614–620.

    Google Scholar 

  78. Liu Y, Naumovski L, Hanawalt P. Nucleotide excision repair capacity is attenuated in human promyelocytic HL60 cells that overexpress BCL2. Cancer Res 1997; 57: 1650–1653.

    Google Scholar 

  79. Cherbonnel-Lasserre C, Gauny S, Kronenberg A. Suppression of apoptosis by Bcl-2 or Bcl-xL promotes susceptibility to mutagenesis. Oncogene 1996; 13: 1489–1497.

    Google Scholar 

  80. Cherbonnel-Lasserre C, Dosanjh MK. Suppression of apoptosis by overexpression of Bcl-2 or Bcl-xL promotes survival and mutagenesis after oxidative damage. Biochimie 1997; 79: 613–617.

    Google Scholar 

  81. Canman CE, Kastan MB. Role of p53 in apoptosis. Adv Pharmacol 1997; 41: 429–460.

    Google Scholar 

  82. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253: 49–53.

    Google Scholar 

  83. Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 1991; 252: 1708–1711.

    Google Scholar 

  84. Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 1991; 65: 1083–1091.

    Google Scholar 

  85. Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 1994; 370: 220–223.

    Google Scholar 

  86. Attardi LD, Lowe SW, Brugarolas J, Jacks T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. Embo J 1996; 15: 3693–3701.

    Google Scholar 

  87. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Google Scholar 

  88. Kemp CJ, Wheldon T, Balmain A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 1994; 8: 66–69.

    Google Scholar 

  89. Williams BO, Remington L, Albert DM, et al. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 1994; 7: 480–484.

    Google Scholar 

  90. Donehower LA, Godley LA, Aldaz CM, et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev 1995; 9: 882–895.

    Google Scholar 

  91. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–6311.

    Google Scholar 

  92. Hermeking H, Eick D. Mediation of c-Myc-induced apoptosis by p53. Science 1994; 265: 2091–2093.

    Google Scholar 

  93. Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 1994; 8: 2817–2830.

    Google Scholar 

  94. Lowe SW, Ruley HE. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 1993; 7: 535–545.

    Google Scholar 

  95. Debbas M, White E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 1993; 7: 546–554.

    Google Scholar 

  96. Chen J, Wu X, Lin J, Levine AJ. mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol Cell Biol 1996; 16: 2445–2452.

    Google Scholar 

  97. Haupt Y, Barak Y, Oren M. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. Embo J 1996; 15: 1596–1606.

    Google Scholar 

  98. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Google Scholar 

  99. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    Google Scholar 

  100. Barak Y, Juven T, Haffner R, Oren M. mdm2 expression is induced by wild type p53 activity. Embo J 1993; 12: 461–468.

    Google Scholar 

  101. Otto A, Deppert W. Upregulation of mdm-2 expression in Meth A tumor cells tolerating wild-type p53. Oncogene 1993; 8: 2591–2603.

    Google Scholar 

  102. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993; 7: 1126–1132.

    Google Scholar 

  103. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89: 7491–7495.

    Google Scholar 

  104. el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Google Scholar 

  105. Xiong Y, Hannon GJ, Zhang H, et al. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–704.

    Google Scholar 

  106. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816.

    Google Scholar 

  107. Brugarolas J, Chandrasekaran C, Gordon JI, et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 1995; 377: 552–557.

    Google Scholar 

  108. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684.

    Google Scholar 

  109. Weinberg WC, Montano NE, Deng C. Loss of p21CIP1/WAF1 does not recapitulate accelerated malignant conversion caused by p53 loss in experimental skin carcinogenesis. Oncogene 1997; 15: 685–690.

    Google Scholar 

  110. Yonish-Rouach E, Resnitzky D, Lotem J, et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352: 345–347.

    Google Scholar 

  111. Shaw P, Bovey R, Tardy S, et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 1992; 89: 4495–4499.

    Google Scholar 

  112. Ryan JJ, Danish R, Gottlieb CA, Clarke MF. Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol Cell Biol 1993; 13: 711–719.

    Google Scholar 

  113. Lotem J, Sachs L. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 1993; 82: 1092–1096.

    Google Scholar 

  114. Strasser A, Harris AW, Jacks T, Cory S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 1994; 79: 329–339.

    Google Scholar 

  115. Martinez J, Georgoff I, Levine AJ. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev 1991; 5: 151–159.

    Google Scholar 

  116. Michalovitz D, Halevy O, Oren M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 1990; 62: 671–680.

    Google Scholar 

  117. Canman CE, Kastan MB. Small contribution of G1 checkpoint control manipulation to modulation of p53-mediated apoptosis. Oncogene 1998; 16: 957–966.

    Google Scholar 

  118. McCurrach ME, Connor TM, Knudson CM, Korsmeyer SJ, Lowe SW. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci USA 1997; 94: 2345–2349.

    Google Scholar 

  119. Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9: 1799–1805.

    Google Scholar 

  120. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Google Scholar 

  121. Bissonnette N, Wasylyk B, Hunting DJ. The apoptotic and transcriptional transactivation activities of p53 can be dissociated. Biochem Cell Biol 1997; 75: 351–358.

    Google Scholar 

  122. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809–819.

    Google Scholar 

  123. Jost CA, Marin MC, Kaelin WG, Jr. p73 is a human p53-related protein that can induce apoptosis. Nature 1997; 389: 191–194.

    Google Scholar 

  124. Bian J, Sun Y. p53CP, a putative p53 competing protein that specifically binds to the consensus p53 DNA binding sites: a third member of the p53 family? Proc Natl Acad Sci USA 1997; 94: 14753–14758.

    Google Scholar 

  125. Zeng X, Levine AJ, Lu H. Non-p53 p53RE binding protein, a human transcription factor functionally analogous to P53. Proc Natl Acad Sci USA 1998; 95: 6681–6686.

    Google Scholar 

  126. Trink B, Okami K, Wu L, et al. Anew human p53 homologue. Nat Med 1998; 4: 747–748.

    Google Scholar 

  127. Osada M, Ohba M, Kawahara C, et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 1998; 4: 839–843.

    Google Scholar 

  128. Reed JC. Bcl-2 family proteins: strategies for overcoming chemoresistance in cancer. Adv Pharmacol 1997; 41: 501–532.

    Google Scholar 

  129. Tsujimoto Y, Yunis J, Onorato-Showe L, et al. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 1984; 224: 1403–1406.

    Google Scholar 

  130. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097–1099.

    Google Scholar 

  131. Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 1985; 82: 7439–7443.

    Google Scholar 

  132. Bakhshi A, Jensen JP, Goldman P, et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985; 41: 899–906.

    Google Scholar 

  133. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Google Scholar 

  134. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1–6.

    Google Scholar 

  135. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 1996; 88: 386–401.

    Google Scholar 

  136. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–619.

    Google Scholar 

  137. Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 1994; 369: 321–323.

    Google Scholar 

  138. Sedlak TW, Oltvai ZN, Yang E, et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci USA 1995; 92: 7834–7838.

    Google Scholar 

  139. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 1993; 4: 327–332.

    Google Scholar 

  140. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    Google Scholar 

  141. Kane DJ, Sarafian TA, Anton R, et al. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1993; 262: 1274–1277.

    Google Scholar 

  142. Muchmore SW, Sattler M, Liang H, et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996; 381: 335–341.

    Google Scholar 

  143. Minn AJ, Vélez P, Schendel SL, et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385: 353–357.

    Google Scholar 

  144. Schendel SL, Xie Z, Montal MO, et al. Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 1997; 94: 5113–5118.

    Google Scholar 

  145. Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997; 277: 370–372.

    Google Scholar 

  146. Schlesinger PH, Gross A, Yin XM, et al. Comparison of the ion channel characteristics of proapoptotic BAX and anti-apoptotic BCL-2. Proc Natl Acad Sci USA 1997; 94: 11357–11362.

    Google Scholar 

  147. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    Google Scholar 

  148. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997; 275: 1132–1136.

    Google Scholar 

  149. Jürgensmeier JM, Xie Z, Deveraux Q, et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998; 95: 4997–5002.

    Google Scholar 

  150. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997; 91: 627–637.

    Google Scholar 

  151. Hengartner MO. Apoptosis. Death cycle and Swiss army knives. Nature 1998; 391: 441–442.

    Google Scholar 

  152. Henriksson M, Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 1996; 68: 109–182.

    Google Scholar 

  153. Ryan KM, Birnie GD. Myc oncogenes: the enigmatic family. Biochem J 1996; 314: 713–721.

    Google Scholar 

  154. White E. Regulation of p53-dependent apoptosis by E1A and E1B. Curr Top Microbiol Immunol 1995; 199: 34–58.

    Google Scholar 

  155. Shim H, Lewis BC, Dolde C, et al. Myc target genes in neoplastic transformation. Curr Top Microbiol Immunol 1997; 224: 181–190.

    Google Scholar 

  156. Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    Google Scholar 

  157. Chen CH, Zhang J, Ling CC. Transfected c-myc and c-Haras modulate radiation-induced apoptosis in rat embryo cells. Radiat Res 1994; 139: 307–315.

    Google Scholar 

  158. Rupnow BA, Murtha AD, Alarcon RM, Giaccia AJ, Knox SJ. Direct evidence that apoptosis enhances tumor responses to fractionated radiotherapy. Cancer Res 1998; 58: 1779–1784.

    Google Scholar 

  159. Rupnow BA, Murtha AD, Chen E, Knox SJ. Myc activation reduces fibroblast clonogenicity via an apoptotic mechanism that can be suppressed by a soluble paracrine factor. Cancer Lett 1998; 127: 211–219.

    Google Scholar 

  160. Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 1996; 382: 511–517.

    Google Scholar 

  161. Hueber AO, Zörnig M, Lyon D, et al. Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis. Science 1997; 278: 1305–1309.

    Google Scholar 

  162. Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998; 279: 1954–1958.

    Google Scholar 

  163. Samuelson AV, Lowe SW. Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc Natl Acad Sci USA 1997; 94: 12094–12099.

    Google Scholar 

  164. Kolesnick RN, Krönke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol 1998; 60: 643–665.

    Google Scholar 

  165. Downward J. Ras signalling and apoptosis. Curr Opin Genet Dev 1998; 8: 49–54.

    Google Scholar 

  166. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993; 259: 1769–1771.

    Google Scholar 

  167. Jarvis WD, Kolesnick RN, Fornari FA, et al. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci USA 1994; 91: 73–77.

    Google Scholar 

  168. Gulbins E, Bissonnette R, Mahboubi A, et al. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 1995; 2: 341–351.

    Google Scholar 

  169. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 1997; 385: 544–548.

    Google Scholar 

  170. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3–3 not BCL-X(L). Cell 1996; 87: 619–628.

    Google Scholar 

  171. del Peso L, González-García M, Page C, Herrera R, Nuñez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    Google Scholar 

  172. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Google Scholar 

  173. Chen G, Branton PE, Yang E, Korsmeyer SJ, Shore GC. Adenovirus E1B 19-kDa death suppressor protein interacts with Bax but not with Bad. J Biol Chem 1996; 271: 24221–24225.

    Google Scholar 

  174. Lloyd AC, Obermüller F, Staddon S, et al. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev 1997; 11: 663–677.

    Google Scholar 

  175. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Google Scholar 

  176. Latinis KM, Carr LL, Peterson EJ, et al. Regulation of CD95 (Fas) ligand expression by TCR-mediated signaling events. J Immunol 1997; 158: 4602–4611.

    Google Scholar 

  177. Zundel W, Giaccia A. Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev 1998; 12: 1941–1946.

    Google Scholar 

  178. Zhou H, Summers SA, Birnbaum MJ, Pittman RN. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 1998; 273: 16568–16575.

    Google Scholar 

  179. Jung M, Zhang Y, Dimtchev A, Dritschilo A. Impaired regulation of nuclear factor-kappaB results in apoptosis induced by gamma radiation. Radiat Res 1998; 149: 596–601.

    Google Scholar 

  180. Shao R, Karunagaran D, Zhou BP, et al. Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis. J Biol Chem 1997; 272: 32739–32742.

    Google Scholar 

  181. Wu M, Lee H, Bellas RE, et al. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. Embo J 1996; 15: 4682–4690.

    Google Scholar 

  182. Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100: 2961–2969.

    Google Scholar 

  183. Mayo MW, Wang CY, Cogswell PC, et al. Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 1997; 278: 1812–1815.

    Google Scholar 

  184. Xie H, Seward RJ, Huber BT. Cytokine rescue from glucocorticoid induced apoptosis in T cells is mediated through inhibition of IkappaBalpha. Mol Immunol 1997; 34: 987–994.

    Google Scholar 

  185. Klefstrom J, Arighi E, Littlewood T, et al. Induction of TNF-sensitive cellular phenotype by c-Myc involves p53 and impaired NF-kappaB activation. Embo J 1997; 16: 7382–7392.

    Google Scholar 

  186. Gamard CJ, Dbaibo GS, Liu B, Obeid LM, Hannun YA. Selective involvement of ceramide in cytokine-induced apoptosis. Ceramide inhibits phorbol ester activation of nuclear factor kappaB. J Biol Chem 1997; 272: 16474–16481.

    Google Scholar 

  187. Baichwal VR, Baeuerle PA. Activate NF-kappa B or die? Curr Biol 1997; 7: R94–R96.

    Google Scholar 

  188. Bristow RG, Benchimol S, Hill RP. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol 1996; 40: 197–223.

    Google Scholar 

  189. Iwaya K, Tsuda H, Hiraide H, et al. Nuclear p53 immunoreaction associated with poor prognosis of breast cancer. Jpn J Cancer Res 1991; 82: 835–840.

    Google Scholar 

  190. Martin HM, Filipe MI, Morris RW, Lane DP, Silvestre F. p53 expression and prognosis in gastric carcinoma. Int J Cancer 1992; 50: 859–862.

    Google Scholar 

  191. Mitsudomi T, Oyama T, Kusano T, et al. Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-cell lung cancer. J Natl Cancer Inst 1993; 85: 2018–2023.

    Google Scholar 

  192. Wada M, Bartram CR, Nakamura H, et al. Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood 1993; 82: 3163–3169.

    Google Scholar 

  193. Esrig D, Elmajian D, Groshen S, et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 1994; 331: 1259–1264.

    Google Scholar 

  194. Döhner H, Fischer K, Bentz M, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995; 85: 1580–1589.

    Google Scholar 

  195. Goh HS, Yao J, Smith DR. p53 point mutation and survival in colorectal cancer patients. Cancer Res 1995; 55: 5217–5221.

    Google Scholar 

  196. Shin DM, Lee JS, Lippman SM, et al. p53 expressions: predicting recurrence and second primary tumors in head and neck squamous cell carcinoma. Journal of the National Cancer Institute 1996; 88: 519–529.

    Google Scholar 

  197. Jansson T, Inganas M, Sjogren S, et al. p53 Status predicts survival in breast cancer patients treated with or without postoperative radiotherapy: a novel hypothesis based on clinical findings. J Clin Oncol 1995; 13: 2745–2751.

    Google Scholar 

  198. Bergh J, Norberg T, Sjögren S, Lindgren A, Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1995; 1: 1029–1034.

    Google Scholar 

  199. Langendijk JA, Thunnissen FB, Lamers RJ, et al. The prognostic significance of accumulation of p53 protein in stage III non-small cell lung cancer treated by radiotherapy. Radiother Oncol 1995; 36: 218–224.

    Google Scholar 

  200. Hamada M, Fujiwara T, Hizuta A, et al. The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers. J Cancer Res Clin Oncol 1996; 122: 360–365.

    Google Scholar 

  201. Fu CG, Tominaga O, Nagawa H, et al. Role of p53 and p21/WAF1 detection in patient selection for preoperative radiotherapy in rectal cancer patients. Dis Colon Rectum 1998; 41: 68–74.

    Google Scholar 

  202. Safran H, King T, Choy H, et al. p53 mutations do not predict response to paclitaxel/radiation for nonsmall cell lung carcinoma. Cancer 1996; 78: 1203–1210.

    Google Scholar 

  203. Wilson GD, Richman PI, Dische S, et al. p53 status of head and neck cancer: relation to biological characteristics and outcome of radiotherapy. Br J Cancer 1995; 71: 1248–1252.

    Google Scholar 

  204. Awwad S, Jaros E, Somes J, Lunec J. P53 overexpression in head and neck carcinoma and radiotherapy results. Int J Radiat Oncol Biol Phys 1996; 34: 323–332.

    Google Scholar 

  205. Baxendine-Jones J, Campbell I, Ellison D. p53 status has no prognostic significance in glioblastomas treated with radiotherapy. Clin Neuropathol 1997; 16: 332–336.

    Google Scholar 

  206. Kyritsis AP, Bondy ML, Hess KR, et al. Prognostic significance of p53 immunoreactivity in patients with glioma. Clin Cancer Res 1995; 1: 1617–1622.

    Google Scholar 

  207. Tada M, Matsumoto R, Iggo RD, et al. Selective sensitivity to radiation of cerebral glioblastomas harboring p53 mutations. Cancer Res 1998; 58: 1793–1997.

    Google Scholar 

  208. Pezzella F, Turley H, Kuzu I, et al. bcl-2 protein in non-small-cell lung carcinoma. N Engl J Med 1993; 329: 690–694.

    Google Scholar 

  209. Campos L, Rouault JP, Sabido O, et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 1993; 81: 3091–3096.

    Google Scholar 

  210. Coustan-Smith E, Kitanaka A, Pui CH, et al. Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 1996; 87: 1140–1146.

    Google Scholar 

  211. Gasparini G, Bevilacqua P, Bonoldi E, et al. Predictive and prognostic markers in a series of patients with head and neck squamous cell invasive carcinoma treated with concurrent chemoradiation therapy. Clin Cancer Res 1995; 1: 1375–1383.

    Google Scholar 

  212. Levine EL, Davidson SE, Roberts SA, et al. Apoptosis as predictor of response to radiotherapy in cervical carcinoma. Lancet 1994; 344: 472.

    Google Scholar 

  213. Levine EL, Renehan A, Gossiel R, et al. Apoptosis, intrinsic radiosensitivity and prediction of radiotherapy response in cervical carcinoma. Radiother Oncol 1995; 37: 1–9.

    Google Scholar 

  214. Wheeler JA, Stephens LC, Tornos C, et al. ASTRO Research Fellowship: apoptosis as a predictor of tumor response to radiation in stage IB cervical carcinoma. American Society for Therapeutic Radiology and Oncology. Int J Radiat Oncol Biol Phys 1995; 32: 1487–1493.

    Google Scholar 

  215. Chyle V, Pollack A, Czerniak B, et al. Apoptosis and down-staging after preoperative radiotherapy for muscle-invasive bladder cancer. Int J Radiat Oncol Biol Phys 1996; 35: 281–287.

    Google Scholar 

  216. Höckel M, Knoop C, Schlenger K, et al. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 1993; 26: 45–50.

    Google Scholar 

  217. Höckel M, Vorndran B, Schlenger K, Baussmann E, Knapstein PG. Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol 1993; 51: 141–149.

    Google Scholar 

  218. Brizel DM, Scully SP, Harrelson JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996; 56: 941–943.

    Google Scholar 

  219. Dubray B, Breton C, Delic J, et al. In vitro radiation-induced apoptosis and tumour response to radiotherapy: a prospective study in patients with non-Hodgkin lymphomas treated by low-dose irradiation. Int J Radiat Biol 1997; 72: 759–760.

    Google Scholar 

  220. Dubray B, Breton C, Delic J, et al. In vitro radiation-induced apoptosis and early response to low-dose radiotherapy in non-Hodgkin's lymphomas. Radiother Oncol 1998; 46: 185–191.

    Google Scholar 

  221. Brown JM. Cell status—dead or alive? Nat Med 1996; 2: 1055–1056.

    Google Scholar 

  222. Ling CC, Endlich B. Radioresistance induced by oncogenic transformation. Radiat Res 1989; 120: 267–279.

    Google Scholar 

  223. McKenna WG, Weiss MC, Bakanauskas VJ, et al. The role of the H-ras oncogene in radiation resistance and metastasis. Int J Radiat Oncol Biol Phys 1990; 18: 849–859.

    Google Scholar 

  224. Guo M, Chen C, Vidair C, et al. Characterization of radiation-induced apoptosis in rodent cell lines. Radiat Res 1997; 147: 295–303.

    Google Scholar 

  225. Ling CC, Chen CH, Li WX. Apoptosis induced at different dose rates: implication for the shoulder region of cell survival curves. Radiother Oncol 1994; 32: 129–136.

    Google Scholar 

  226. Pomp J, Ouwerkerk IJ, Hermans J, et al. The influence of the oncogenes NRAS and MYC on the radiation sensitivity of cells of a human melanoma cell line. Radiat Res 1996; 146: 374–381.

    Google Scholar 

  227. Aldridge DR, Arends MJ, Radford IR. Increasing the susceptibility of the rat 208F fibroblast cell line to radiation-induced apoptosis does not alter its clonogenic survival dose-response. Br J Cancer 1995; 71: 571–577.

    Google Scholar 

  228. Su LN, Little JB. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with SV40 T-antigen mutants defective in RB and P53 binding domains. Int J Radiat Biol 1992; 62: 461–468.

    Google Scholar 

  229. Jung M, Dritschilo A. Modification of the radiosensitivity of human testicular cancer cells by simian virus 40 sequences. Radiat Res 1994; 140: 186–190.

    Google Scholar 

  230. Pardo FS, Su M, Borek C, et al. Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance. Radiat Res 1994; 140: 180–185.

    Google Scholar 

  231. Bristow RG, Jang A, Peacock J, et al. Mutant p53 increases radioresistance in rat embryo fibroblasts simultaneously transfected with HPV16-E7 and/or activated H-ras. Oncogene 1994; 9: 1527–1536.

    Google Scholar 

  232. Gupta N, Vij R, Haas-Kogan DA, et al. Cytogenetic damage and the radiation-induced G1-phase checkpoint. Radiat Res 1996; 145: 289–298.

    Google Scholar 

  233. Biard DS, Martin M, Rhun YL, et al. Concomitant p53 gene mutation and increased radiosensitivity in rat lung embryo epithelial cells during neoplastic development. Cancer Res 1994; 54: 3361–3364.

    Google Scholar 

  234. Balcer-Kubiczek EK, Yin J, Lin K, et al. p53 mutational status and survival of human breast cancer MCF-7 cell variants after exposure to X rays or fission neutrons. Radiat Res 1995; 142: 256–262.

    Google Scholar 

  235. Tsang NM, Nagasawa H, Li C, Little JB. Abrogation of p53 function by transfection of HPV16 E6 gene enhances the resistance of human diploid fibroblasts to ionizing radiation. Oncogene 1995; 10: 2403–2408.

    Google Scholar 

  236. Sanchez-Prieto R, Lleonart M, Ramón y Cajal S. Lack of correlation between p53 protein level and sensitivity of DNA-damaging agents in keratinocytes carrying adenovirus E1a mutants. Oncogene 1995; 11: 675–682.

    Google Scholar 

  237. Sanchez-Prieto R, Quintanilla M, Cano A, et al. Carcinoma cell lines become sensitive to DNA-damaging agents by the expression of the adenovirus E1A gene. Oncogene 1996; 13: 1083–1092.

    Google Scholar 

  238. Schwartz JL, Jordan R, Sedita BA, et al. Different sensitivity to cell killing and chromosome mutation induction by gamma rays in two human lymphoblastoid cell lines derived from a single donor: possible role of apoptosis. Mutagenesis 1995; 10: 227–233.

    Google Scholar 

  239. Zhen W, Denault CM, Loviscek K, et al. The relative radiosensitivity of TK6 and WI-L2-NS lymphoblastoid cells derived from a common source is primarily determined by their p53 mutational status. Mutat Res 1995; 346: 85–92.

    Google Scholar 

  240. Zellars RC, Naida JD, Davis MA, Lawrence TS. Effect of p53 overexpression on radiation sensitivity of human colon cancer cells. Radiat Oncol Investig 1997; 5: 43–49.

    Google Scholar 

  241. Namba H, Hara T, Tukazaki T, et al. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/Cip1 pathway in human thyroid cells. Cancer Res 1995; 55: 2075–2080.

    Google Scholar 

  242. Peacock JW, Chung S, Bristow RG, Hill RP, Benchimol S. The p53-mediated G1 checkpoint is retained in tumorigenic rat embryo fibroblast clones transformed by the human papillomavirus type 16 E7 gene and EJ-ras. Mol Cell Biol 1995; 15: 1446–1454.

    Google Scholar 

  243. Siles E, Villalobos M, Valenzuela MT, et al. Relationship between p53 status and radiosensitivity in human tumour cell lines. Br J Cancer 1996; 73: 581–588.

    Google Scholar 

  244. Wang J, Robbins ME. Radiation-induced alteration of rat mesangial cell transforming growth factor-beta and expression of the genes associated with the extracellular matrix. Radiat Res 1996; 146: 561–568.

    Google Scholar 

  245. Griffiths SD, Clarke AR, Healy LE, et al. Absence of p53 permits propagation of mutant cells following genotoxic damage. Oncogene 1997; 14: 523–531.

    Google Scholar 

  246. Haas-Kogan DA, Yount G, Haas M, et al. p53-dependent G1 arrest and p53-independent apoptosis influence the radiobiologic response of glioblastoma. Int J Radiat Oncol Biol Phys 1996; 36: 95–103.

    Google Scholar 

  247. Huang H, Li CY, Little JB. Abrogation of P53 function by transfection of HPV16 E6 gene does not enhance resistance of human tumour cells to ionizing radiation. Int J Radiat Biol 1996; 70: 151–160.

    Google Scholar 

  248. Yu Y, Li CY, Little JB. Abrogation of p53 function by HPV16 E6 gene delays apoptosis and enhances mutagenesis but does not alter radiosensitivity in TK6 human lymphoblast cells. Oncogene 1997; 14: 1661–1667.

    Google Scholar 

  249. Fan S, Smith ML, Rivet DJ, 2nd, et al. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 1995; 55: 1649–1654.

    Google Scholar 

  250. DeWeese TL, Walsh JC, Dillehay LE, et al. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation. Int J Radiat Oncol Biol Phys 1997; 37: 145–154.

    Google Scholar 

  251. Silva A, Wyllie A, Collins MK. p53 is not required for regulation of apoptosis or radioprotection by interleukin-3. Blood 1997; 89: 2717–2722.

    Google Scholar 

  252. Brachman DG, Beckett M, Graves D, et al. p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res 1993; 53: 3667–3669.

    Google Scholar 

  253. Servomaa K, Kiuru A, Grénman R, et al. p53 mutations associated with increased sensitivity to ionizing radiation in human head and neck cancer cell lines. Cell Prolif 1996; 29: 219–230.

    Google Scholar 

  254. Yount GL, Haas-Kogan DA, Vidair CA, et al. Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. Cancer Res 1996; 56: 500–506.

    Google Scholar 

  255. Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB. Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 1993; 53: 4164–4168.

    Google Scholar 

  256. McIlwrath AJ, Vasey PA, Ross GM, Brown R. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res 1994; 54: 3718–3722.

    Google Scholar 

  257. Waldman T, Zhang Y, Dillehay L, et al. Cell-cycle arrest versus cell death in cancer therapy. Nat Med 1997; 3: 1034–1036.

    Google Scholar 

  258. Wouters BG, Giaccia AJ, Denko NC, Brown JM. Loss of p21Waf1/Cip1 sensitizes tumors to radiation by an apoptosis-independent mechanism. Cancer Res 1997; 57: 4703–4706.

    Google Scholar 

  259. Haas-Kogan DA, Kogan SC, Levi D, et al. Inhibition of apoptosis by the retinoblastoma gene product. Embo J 1995; 14: 461–472.

    Google Scholar 

  260. Fukunaga-Johnson N, Ryan JJ, Wicha M, Nuñez G, Clarke MF. Bcl-2 protects murine erythroleukemia cells from p53-dependent and-independent radiation-induced cell death. Carcinogenesis 1995; 16: 1761–1767.

    Google Scholar 

  261. Sakakura C, Sweeney EA, Shirahama T, et al. Overexpression of bax sensitizes human breast cancer MCF-7 cells to radiation-induced apoptosis. Int J Cancer 1996; 67: 101–105.

    Google Scholar 

  262. Milner AE, Grand RJ, Vaughan AT, Armitage RJ, Gregory CD. Differential effects of BCL-2 on survival and proliferation of human B-lymphoma cells following gamma-irradiation. Oncogene 1997; 15: 1815–1822.

    Google Scholar 

  263. Kyprianou N, King ED, Bradbury D, Rhee JG. bcl-2 overexpression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. Int J Cancer 1997; 70: 341–348.

    Google Scholar 

  264. Powell SN, DeFrank JS, Connell P, et al. Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 1995; 55: 1643–1648.

    Google Scholar 

  265. Bernhard EJ, Muschel RJ, Bakanauskas VJ, McKenna WG. Reducing the radiation-induced G2 delay causes HeLa cells to undergo apoptosis instead of mitotic death. Int J Radiat Biol 1996; 69: 575–584.

    Google Scholar 

  266. Fuks Z, Persaud RS, Alfieri A, et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 1994; 54: 2582–2590.

    Google Scholar 

  267. Canman CE, Gilmer TM, Coutts SB, Kastan MB. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 1995; 9: 600–611.

    Google Scholar 

  268. Balaban N, Moni J, Shannon M, et al. The effect of ionizing radiation on signal transduction: antibodies to EGF receptor sensitize A431 cells to radiation. Biochim Biophys Acta 1996; 1314: 147–156.

    Google Scholar 

  269. Haimovitz-Friedman A, Balaban N, McLoughlin M, et al. Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 1994; 54: 2591–2597.

    Google Scholar 

  270. Wollman R, Yahalom J, Maxy R, Pinto J, Fuks Z. Effect of epidermal growth factor on the growth and radiation sensitivity of human breast cancer cells in vitro. Int J Radiat Oncol Biol Phys 1994; 30: 91–98.

    Google Scholar 

  271. Kwok TT, Sutherland RM. Differences in EGF related radiosensitisation of human squamous carcinoma cells with high and low numbers of EGF receptors. Br J Cancer 1991; 64: 251–254.

    Google Scholar 

  272. Palayoor ST, Bump EA, Calderwood SK, Bartol S, Coleman CN. Combined antitumor effect of radiation and ibuprofen in human prostate carcinoma cells. Clin Cancer Res 1998; 4: 763–771.

    Google Scholar 

  273. Bernhard EJ, Kao G, Cox AD, et al. The farnesyltransferase inhibitor FTI-277 radiosensitizes H-ras-transformed rat embryo fibroblasts. Cancer Res 1996; 56: 1727–1730.

    Google Scholar 

  274. Chmura SJ, Mauceri HJ, Advani S, et al. Decreasing the apoptotic threshold of tumor cells through protein kinase C inhibition and sphingomyelinase activation increases tumor killing by ionizing radiation. Cancer Res 1997; 57: 4340–4347.

    Google Scholar 

  275. Watson NC, Jarvis WD, Orr MS, Grant S, Gewirtz DA. Radiosensitization of HL-60 human leukaemia cells by bryostatin-1 in the absence of increased DNA fragmentation or apoptotic cell death. Int J Radiat Biol 1996; 69: 183–192.

    Google Scholar 

  276. Voehringer DW, Story MD, O'Neil RG, Meyn RE. Modulating Ca2+ in radiation-induced apoptosis suppresses DNA fragmentation but does not enhance clonogenic survival. Int J Radiat Biol 1997; 71: 237–243.

    Google Scholar 

  277. Story MD, Voehringer DW, Malone CG, Hobbs ML, Meyn RE. Radiation-induced apoptosis in sensitive and resistant cells isolated from a mouse lymphoma. Int J Radiat Biol 1994; 66: 659–668.

    Google Scholar 

  278. Russell J, Wheldon TE, Stanton P. A radioresistant variant derived from a human neuroblastoma cell line is less prone to radiation-induced apoptosis. Cancer Res 1995; 55: 4915–4921.

    Google Scholar 

  279. Ghosh R, Sengupta S, Bhattacharyya NP. Induction of apoptosis by ionizing radiation in Chinese hamster V79 cells and a radioresistant cell strain derived from V79. Indian J Exp Biol 1996; 34: 863–867.

    Google Scholar 

  280. Mitsuhashi N, Ishikawa H, Saito Y, et al. A quantitative study of radiation-induced apoptosis in two rat yolk sac tumour cell lines with different radiosensitivities in vitro. Anticancer Res 1997; 17: 3605–3608.

    Google Scholar 

  281. Mitsuhashi N, Takahashi T, Sakurai H, et al. A radioresistant variant cell line, NMT-1R, isolated from a radiosensitive rat yolk sac tumour cell line, NMT-1: differences of early radiation-induced morphological changes, especially apoptosis. Int J Radiat Biol 1996; 69: 329–336.

    Google Scholar 

  282. Kawai H, Kitamura Y, Nikaido O, et al. Isolation and characterization of apoptosis-resistant mutants from a radiosensitive mouse lymphoma cell line. Radiat Res 1998; 149: 41–51.

    Google Scholar 

  283. Han Z, Chatterjee D, He DM, et al. Evidence for a G2 checkpoint in p53-independent apoptosis induction by X-irradiation. Mol Cell Biol 1995; 15: 5849–5857.

    Google Scholar 

  284. Hu Q, Hill RP. Radiosensitivity, apoptosis and repair of DNA double-strand breaks in radiation-sensitive Chinese hamster ovary cell mutants treated at different dose rates. Radiat Res 1996; 146: 636–645.

    Google Scholar 

  285. Nakano H, Shinohara K. X-ray-induced cell death: apoptosis and necrosis. Radiat Res 1994; 140: 1–9.

    Google Scholar 

  286. Algan O, Stobbe CC, Helt AM, Hanks GE, Chapman JD. Radiation inactivation of human prostate cancer cells: the role of apoptosis. Radiat Res 1996; 146: 267–275.

    Google Scholar 

  287. McKay MJ, Kefford RF. The spectrum of in vitro radiosensitivity in four human melanoma cell lines is not accounted for by differential induction or rejoining of DNA double strand breaks. Int J Radiat Oncol Biol Phys 1995; 31: 345–352.

    Google Scholar 

  288. Burger H, Nooter K, Boersma AW, et al. Expression of p53, p21/WAF/CIP, Bcl-2, Bax, Bcl-x, and Bak in radiation-induced apoptosis in testicular germ cell tumor lines. Int J Radiat Oncol Biol Phys 1998; 41: 415–424.

    Google Scholar 

  289. Dewey WC, Ling CC, Meyn RE. Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys 1995; 33: 781–796.

    Google Scholar 

  290. Ling CC, Chen CH, Fuks Z. An equation for the dose response of radiation-induced apoptosis: possible incorporation with the LQ model. Radiother Oncol 1994; 33: 17–22.

    Google Scholar 

  291. Tauchi H, Sawada S. Analysis of mitotic cell death caused by radiation in mouse leukaemia L5178Y cells: apoptosis is the ultimate form of cell death following mitotic failure. Int J Radiat Biol 1994; 65: 449–455.

    Google Scholar 

  292. Yanagihara K, Nii M, Numoto M, et al. Radiation-induced apoptotic cell death in human gastric epithelial tumour cells; correlation between mitotic death and apoptosis. Int J Radiat Biol 1995; 67: 677–685.

    Google Scholar 

  293. Vidair CA, Chen CH, Ling CC, Dewey WC. Apoptosis induced by X-irradiation of rec-myc cells is postmitotic and not predicted by the time after irradiation or behavior of sister cells. Cancer Res 1996; 56: 4116–4118.

    Google Scholar 

  294. Olive PL, Durand RE. Apoptosis: an indicator of radiosensitivity in vitro? Int J Radiat Biol 1997; 71: 695–707.

    Google Scholar 

  295. Olsen DR. Calculation of the biological effect of fractionated radiotherapy: the importance of radiation-induced apoptosis. Br J Radiol 1995; 68: 1230–1236.

    Google Scholar 

  296. Stephens LC, Hunter NR, Ang KK, Milas L, Meyn RE. Development of apoptosis in irradiated murine tumors as a function of time and dose. Radiat Res 1993; 135: 75–80.

    Google Scholar 

  297. Meyn RE, Stephens LC, Ang KK, et al. Heterogeneity in the development of apoptosis in irradiated murine tumours of different histologies. Int J Radiat Biol 1993; 64: 583–591.

    Google Scholar 

  298. Meyn RE, Stephens LC, Hunter NR, Ang KK, Milas L. Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors. Int J Radiat Oncol Biol Phys 1994; 30: 619–624.

    Google Scholar 

  299. Lowe SW, Bodis S, McClatchey A, et al. p53 status and the efficacy of cancer therapy in vivo. Science 1994; 266: 807–810.

    Google Scholar 

  300. Perdomo JA, Naomoto Y, Haisa M, et al. In vivo influence of p53 status on proliferation and chemoradiosensitivity in non-small-cell lung cancer. J Cancer Res Clin Oncol 1998; 124: 10–18.

    Google Scholar 

  301. Lamb JR, Friend SH. Which guesstimate is the best guesstimate? Predicting chemotherapeutic outcomes. Nat Med 1997; 3: 962–963.

    Google Scholar 

  302. Gura T. Systems for identifying new drugs are often faulty. Science 1997; 278: 1041–1042.

    Google Scholar 

  303. Amundson SA, Xia F, Wolfson K, Liber HL. Different cytotoxic and mutagenic responses induced by X-rays in two human lymphoblastoid cell lines derived from a single donor. Mutat Res 1993; 286: 233–241.

    Google Scholar 

  304. Xia F, Amundson SA, Nickoloff JA, Liber HL. Different capacities for recombination in closely related human lymphoblastoid cell lines with different mutational responses to X-irradiation. Mol Cell Biol 1994; 14: 5850–5857.

    Google Scholar 

  305. Anthoney DA, McIlwrath AJ, Gallagher WM, Edlin AR, Brown R. Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells. Cancer Res 1996; 56: 1374–1381.

    Google Scholar 

  306. Glinsky GV, Glinsky VV. Apoptosis and metastasis: a superior resistance of metastatic cancer cells to programmed cell death. Cancer Lett 1996; 101: 43–51.

    Google Scholar 

  307. Glinsky GV, Glinsky VV, Ivanova AB, Hueser CJ. Apoptosis and metastasis: increased apoptosis resistance of metastatic cancer cells is associated with the profound deficiency of apoptosis execution mechanisms. Cancer Lett 1997; 115: 185–193.

    Google Scholar 

  308. McConkey DJ, Greene G, Pettaway CA. Apoptosis resistance increases with metastatic potential in cells of the human LNCaP prostate carcinoma line. Cancer Res 1996; 56: 5594–5599.

    Google Scholar 

  309. Takaoka A, Adachi M, Okuda H, et al. Anti-cell death activity promotes pulmonary metastasis of melanoma cells. Oncogene 1997; 14: 2971–2977.

    Google Scholar 

  310. Shtivelman E. A link between metastasis and resistance to apoptosis of variant small cell lung carcinoma. Oncogene 1997; 14: 2167–2173.

    Google Scholar 

  311. Inbal B, Cohen O, Polak-Charcon S, et al. DAP kinase links the control of apoptosis to metastasis. Nature 1997; 390: 180–184.

    Google Scholar 

  312. Liu TJ, Zhang WW, Taylor DL, et al. Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 1994; 54: 3662–3667.

    Google Scholar 

  313. Clayman GL, el-Naggar AK, Roth JA, et al. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res 1995; 55: 1–6.

    Google Scholar 

  314. Eastham JA, Hall SJ, Sehgal I, et al. In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 1995; 55: 5151–5155.

    Google Scholar 

  315. Liu TJ, el-Naggar AK, McDonnell TJ, et al. Apoptosis induction mediated by wild-type p53 adenoviral gene transfer in squamous cell carcinoma of the head and neck. Cancer Res 1995; 55: 3117–3122.

    Google Scholar 

  316. Lesoon-Wood LA, Kim WH, Kleinman HK, Weintraub BD, Mixson AJ. Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Hum Gene Ther 1995; 6: 395–405.

    Google Scholar 

  317. Gallardo D, Drazan KE, McBride WH. Adenovirus-based transfer of wild-type p53 gene increases ovarian tumor radiosensitivity. Cancer Res 1996; 56: 4891–4893.

    Google Scholar 

  318. Spitz FR, Nguyen D, Skibber JM, et al. In vivo adenovirus-mediated p53 tumor suppressor gene therapy for colorectal cancer. Anticancer Res 1996; 16: 3415–3422.

    Google Scholar 

  319. Chang EH, Jang YJ, Hao Z, et al. Restoration of the G1 checkpoint and the apoptotic pathway mediated by wild-type p53 sensitizes squamous cell carcinoma of the head and neck to radiotherapy. Arch Otolaryngol Head Neck Surg 1997; 123: 507–512.

    Google Scholar 

  320. Pirollo KF, Hao Z, Rait A, et al. p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene 1997; 14: 1735–1746.

    Google Scholar 

  321. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996; 2: 985–991.

    Google Scholar 

  322. Han JS, Núñez G, Wicha MS, Clarke MF. Targeting cancer cell death with a bcl-XS adenovirus. Springer Semin Immunopathol 1998; 19: 279–288.

    Google Scholar 

  323. Tseng BY, Brown KD. Antisense oligonucleotide technology in the development of cancer therapeutics. Cancer Gene Ther 1994; 1: 65–71.

    Google Scholar 

  324. Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC. Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 1994; 4: 71–79.

    Google Scholar 

  325. Ziegler A, Luedke GH, Fabbro D, et al. Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. Journal of the National Cancer Institute 1997; 89: 1027–1036.

    Google Scholar 

  326. Dorai T, Olsson CA, Katz AE, Buttyan R. Development of a hammerhead ribozyme against bcl-2. I. Preliminary evaluation of a potential gene therapeutic agent for hormone-refractory human prostate cancer. Prostate 1997; 32: 246–258.

    Google Scholar 

  327. Dorai T, Goluboff ET, Olsson CA, Buttyan R. Development of a hammerhead ribozyme against BCL-2. II. Ribozyme treatment sensitizes hormone-resistant prostate cancer cells to apoptotic agents. Anticancer Res 1997; 17: 3307–3312.

    Google Scholar 

  328. Webb A, Cunningham D, Cotter F, et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 1997; 349: 1137–1141.

    Google Scholar 

  329. Hallahan DE, Mauceri HJ, Seung LP, et al. Spatial and temporal control of gene therapy using ionizing radiation. Nat Med 1995; 1: 786–791.

    Google Scholar 

  330. McBride WH, Dougherty GJ. Radiotherapy for genes that cause cancer. Nat Med 1995; 1: 1215–1217.

    Google Scholar 

  331. Knox SJ. Overview of studies on experimental radioimmunotherapy. Cancer Res 1995; 55: 5832s-5836s.

    Google Scholar 

  332. Murtha AD, Rupnow BA, Knox SJ. Low dose rate radiation favors apoptosis as a mechanism of cell death. Int J Radiat Oncol Biol Phys 1997; 39: 242.

    Google Scholar 

  333. DeNardo SJ, Kukis DL, Miers LA, et al. Yttrium-90-DOTA-peptide-chimeric L6 radioimmunoconjugate: efficacy and toxicity in mice bearing p53 mutant human breast cancer xenografts. J Nucl Med 1998; 39: 842–849.

    Google Scholar 

  334. Winthrop MD, DeNardo SJ, Muenzer JT, Chi SG, Gumerlock PH. p53-independent response of a human breast carcinoma xenograft to radioimmunotherapy. Cancer 1997; 80: 2529–2537.

    Google Scholar 

  335. Palayoor ST, Macklis RM, Bump EA, Coleman CN. Modulation of radiation-induced apoptosis and G2/M block in murine T-lymphoma cells. Radiat Res 1995; 141: 235–243.

    Google Scholar 

  336. Russell KJ, Wiens LW, Demers GW, et al. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Cancer Res 1995; 55: 1639–1642.

    Google Scholar 

  337. Neta R. Modulation with cytokines of radiation injury: suggested mechanisms of action. Environ Health Perspect 1997; 105(Suppl 6): 1463–1465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupnow, B.A., Knox, S.J. The role of radiation-induced apoptosis as a determinant of tumor responses to radiation therapy. Apoptosis 4, 115–143 (1999). https://doi.org/10.1023/A:1009675028784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009675028784

Navigation