Appleby, P. G. and Oldfield, F. (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena
5, 1-8.
Google Scholar
Benner, R., Fogel, M. L., Sprague, E. K., & Hudson, R. E. (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature
329, 708-710.
Google Scholar
Berner, R. A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press.
Berner, R. A. (1985) Sulphate reduction, organic matter decomposition and pyrite formation. Phil. Trans. R. Soc. Lond.
A315, 25-38.
Google Scholar
Biermann, C. (1993) Essentials of Pulping and Paper Making. Academic Press.
Brim, M. (1994) Environmental Contaminants Evaluation of St. Andrew Bay, Florida, vol. 1. Publication No. PCFO-EC 94-11. U.S. Fish and Wildlife Service.
Brüchert, V. (1998) Early diagenesis of sulfur: The role of humic and fulvic acids. Geochim. et Cosmochim. Acta
62, 1567-1586.
Google Scholar
Brüchert, V. and Pratt, L. M. (1996) Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA. Geochim. Cosmochim. Acta
60, 2325-2332.
Google Scholar
Canfield, D. E. and Thamdrup, B. (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science
266, 1973-1975.
Google Scholar
Canfield, D. E. and Thamdrup, B. (1996) Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol. Ecol.
19, 95-103.
Google Scholar
Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., and Berner, R. A. (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol.
54, 149-155.
Google Scholar
Chambers, L. A. and Trudinger, P. A. (1979) Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiol. J.
1, 249-293.
Google Scholar
Chambers, L. A., Trudinger, P. A., Smith, J. W., and Burns, M. S. (1975) Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. Can J. Microbiol.
21, 1602-1607.
Google Scholar
Chambers, R. M., Hollibaugh, J. T., and Vink, S. M. (1994) Sulfate reduction and sediment metabolism in Tomales Bay, California. Biogeochem.
25, 1-18.
Google Scholar
Chanton, J. P., Martens, C. S., and Goldhaber, M. B. (1987a) Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim. Cosmochim. Acta
51, 1187-1199.
Google Scholar
Chanton, J. P., Martens, C. S., and Goldhaber, M. B. (1987b) Biogeochemical cycling in an organic-rich coastal marine basin. 8. A Sulfur isotope budget balanced by differential diffusion across the sediment-water interface. Geochim. Cosmochim. Acta
51, 1201-1208.
Google Scholar
Colberg, P. J. (1988) Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. In Biology of Anaerobic Microorganisms (ed. A. J. B. Zehnder), pp. 333-372, Wiley.
Ferdelman, T. G., Lee, C., Pantoia, S., Harder, J., Bebout, B., and Fossing, H. (1997) Sulfate reduction and methanogenesis in Thioploca-dominated sediment off the coast of Chile. Geochimica Cosmochimica Acta
61, 3065-3079.
Google Scholar
Fossing, H. (1995) 35S-radiolabelling to probe biogeochemical cycling. In Geochemical Transformations of Sedimentary Sulfur (eds. M. A. Vairavamurthy and M. A. A. Schoonen), pp. 348-364, ACS Symposium Series 612.
Fry, B., Cox, J. Gest, H., and Hayes, J. M. (1986) Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds. J. Bact.
165, 328-330.
Google Scholar
Goldhaber, M. B. and Kaplan, I. R. (1974) The sulfur cycle. In The Sea, Vol. 5 (ed. E. D. Goldberg), pp. 569-655, Wiley.
Goldhaber, M. B. and Kaplan, I. R. (1980) Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar. Chem.
9, 95-143.
Google Scholar
Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens, C. S., and Berner, R. A. (1977) Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM group. Amer. J. Sci.
277, 193-237.
Google Scholar
Goñi, M. A. and Eglinton, T. I. (1996) Stable carbon isotopic analysis of lignin-derived CuO oxidation products by isotope ratio monitoring-gas chromatography-mass spectrometry (irm-GC-MS). Org. Geochem.
24, 610-615.
Google Scholar
Habicht, K. S. and Canfield, D. E. (1996) Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature
382, 342-343.
Google Scholar
Habicht, K. S. and Canfield, D. E. (1997) Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim. Cosmochim. Acta
61, 5351-5361.
Google Scholar
Henrichs, S. M. and Reeburgh, W. S. (1987) Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J.
5, 191-237.
Google Scholar
Ishiye, T. and Jones, M. L. (1961) On the hydrography of the St. Andrew Bay System. Limnol. Oceanogr.
6, 302-311.
Google Scholar
Iversen, N. and Jørgensen, B. B. (1994) Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim. Cosmochim. Acta
57, 571-578.
Google Scholar
Jørgensen, B. B. (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr.
22, 814-832.
Google Scholar
Jørgensen, B. B. (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation from mathematical models. Geomicrobiol J.
1, 29-47.
Google Scholar
Jørgensen, B. B. (1979) A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochim. Cosmochim. Acta
43, 363-374.
Google Scholar
Jørgensen, B. B. (1983) Processes at the sediment-water interface, In The Major Biogeochemical Cycles and Their Interactions (eds. B. Bolin and R. C. Cook) Scope 21, pp. 477-509, Wiley.
Kaplan, I. R. and Rittenberg, S. C. (1964) Microbiological fractionation of sulphur isotopes. J. Gen Microbiol.
34, 195-212.
Google Scholar
Kemp, A. L. W. and Thode, A. G. (1968) The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies. Geochim. Cosmochim. Acta
32, 71-91.
Google Scholar
Kohnen, M. E. T., Sinninghe Damsté, J. S., ten Haven, H. L., and de Leeuw, J. W. (1989) Early incorporation of polysulphides in sediment organic matter. Nature
341, 640-641.
Google Scholar
Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J. (1991) Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments. Environ. Sci. Technol.
25, 1062-1067.
Google Scholar
Luther, G.W. III, Shellenbarger, P. A., and Brendel, P. J. (1996) Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters. Geochim. Cosmochim. Acta
60, 951-960.
Google Scholar
Martens, C. S. and Klump, V. (1984) Biogeochemical cycling in an organic-rich sediment 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta
48, 1987-2004.
Google Scholar
McCready, R. G. L. (1975) Sulphur isotope fractionation by Desulfovibrio and Desulfotomaculum species. Geochim. Cosmochim. Acta
39, 1395-1401.
Google Scholar
Nixon, S.W. (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia
41, 199-220.
Google Scholar
Price, F. T. and Shieh, Y. N. (1979) Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures. Chem. Geol.
27, 245-253.
Google Scholar
Raiswell, R., Buckley, F., Berner, R. A., and Anderson, T. F. (1988) Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sed. Pet.
58, 812-819.
Google Scholar
Raiswell, R., Canfield, D. E., and Berner, R. A. (1994) A comparison of iron extraction methods for the determination of degree of pyritization and the recognition of iron-limited pyrite formation. Chem. Geol.
111, 101-110.
Google Scholar
Raiswell, R. and Canfield, D. E. (1996) Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochim. Cosmochim. Acta
60, 2777-2787.
Google Scholar
Richardson, K. and Jørgensen, B. B. (1996) Eutrophication: Definition, history and effects. In Eutrophication in Coastal Marine Ecosystems (eds. B. B. Jørgensen and K. Richardson), Coastal Estuarine Studies 52, pp. 1-20, American Geophysical Union.
Sarkanen, K. V. and Ludwig, C. H. (1971) Lignins: Occurrence, Formation, Structure and Reactions. Wiley Interscience.
Smetacek, V., Bathmann, U., Nöthig, E-M., and Scharek, R. (1991) Coastal eutrophication: Causes and consequences. In Ocean Margin Processes in Global Change (eds. R. F. C. Mantoura et al.), pp. 251-280, Wiley.
Soutaert, K., Herman, P. M. J., and Middelburg, J. J. (1996) A model of early diagenetic processes from the shelf to abyssal depths. Geochim. Cosmochim. Acta
60, 1019-1040.
Google Scholar
Thamdrup, B., Finster, K., Hansen, J. W., and Bak, F. (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Appl. Env. Microbiol.
59, 101-108
Google Scholar
Thamdrup, B., Fossing, H., and Jørgensen, B. B. (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta
58, 5115-5129.
Google Scholar
Vollenweider, R. A. (1992) Coastal marine eutrophication: principles and control, In Marine Coastal Eutrophication (eds. R. A. Vollenweider et al.), pp. 1-20, Elsevier, Amsterdam.
Google Scholar
Wang, Y. and van Cappellen, P. (1996) A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta
60, 2993-3014.
Google Scholar
Westrich, J. T. and Berner, R. A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr.
29, 236-249.
Google Scholar