Skip to main content

Stable Sulfur Isotopic Evidence for Historical Changes of Sulfur Cycling in Estuarine Sediments from Northern Florida

Abstract

Data on abundance and isotopic composition of porewater and sedimentary sulfur species are reported for relatively uncontaminated and highly contaminated fine-grained anoxic sediments of St. Andrew Bay, Florida. A strong contrast in amount and composition of sedimentary organic matter at the two sites allows a comparative study of the historical effects of increased organic loading on sulfur cycling and sulfur isotopic fractionation. In the contaminated sediments, an increase in organic loading caused increased sedimentary carbon/sulfur ratios and resulted in higher rates of bacterial sulfate reduction, but a lower efficiency of sulfide oxidation. These differences are well reflected in the isotopic composition of dissolved sulfate, sulfide, and sedimentary pyrite. Concentration and isotopic profiles of dissolved sulfate, organic carbon, and total sulfur suggest that the anaerobic decomposition of organic matter is most active in the upper 8cm but proceeds at very slow rates below this depth. The rapid formation of more than 90% of pyrite in the uppermost 2 cm which corresponds to about 3 years of sediment deposition allows the use of pyrite isotopic composition for tracing changing diagenetic conditions. Sediment profiles of the sulfur isotopic composition of pyrite reflect present-day higher rates of bacterial sulfate reduction and lower rates of sulfide oxidation, and record a profound change in the diagenetic cycling of sulfur in the contaminated sediments coincident with urban and industrial development of the St. Andrew Bay area.

This is a preview of subscription content, access via your institution.

References

  • Appleby, P. G. and Oldfield, F. (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, 1-8.

    Google Scholar 

  • Benner, R., Fogel, M. L., Sprague, E. K., & Hudson, R. E. (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329, 708-710.

    Google Scholar 

  • Berner, R. A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press.

  • Berner, R. A. (1985) Sulphate reduction, organic matter decomposition and pyrite formation. Phil. Trans. R. Soc. Lond. A315, 25-38.

    Google Scholar 

  • Biermann, C. (1993) Essentials of Pulping and Paper Making. Academic Press.

  • Brim, M. (1994) Environmental Contaminants Evaluation of St. Andrew Bay, Florida, vol. 1. Publication No. PCFO-EC 94-11. U.S. Fish and Wildlife Service.

  • Brüchert, V. (1998) Early diagenesis of sulfur: The role of humic and fulvic acids. Geochim. et Cosmochim. Acta 62, 1567-1586.

    Google Scholar 

  • Brüchert, V. and Pratt, L. M. (1996) Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA. Geochim. Cosmochim. Acta 60, 2325-2332.

    Google Scholar 

  • Canfield, D. E. and Thamdrup, B. (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266, 1973-1975.

    Google Scholar 

  • Canfield, D. E. and Thamdrup, B. (1996) Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol. Ecol. 19, 95-103.

    Google Scholar 

  • Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., and Berner, R. A. (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149-155.

    Google Scholar 

  • Chambers, L. A. and Trudinger, P. A. (1979) Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiol. J. 1, 249-293.

    Google Scholar 

  • Chambers, L. A., Trudinger, P. A., Smith, J. W., and Burns, M. S. (1975) Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. Can J. Microbiol. 21, 1602-1607.

    Google Scholar 

  • Chambers, R. M., Hollibaugh, J. T., and Vink, S. M. (1994) Sulfate reduction and sediment metabolism in Tomales Bay, California. Biogeochem. 25, 1-18.

    Google Scholar 

  • Chanton, J. P., Martens, C. S., and Goldhaber, M. B. (1987a) Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim. Cosmochim. Acta 51, 1187-1199.

    Google Scholar 

  • Chanton, J. P., Martens, C. S., and Goldhaber, M. B. (1987b) Biogeochemical cycling in an organic-rich coastal marine basin. 8. A Sulfur isotope budget balanced by differential diffusion across the sediment-water interface. Geochim. Cosmochim. Acta 51, 1201-1208.

    Google Scholar 

  • Colberg, P. J. (1988) Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. In Biology of Anaerobic Microorganisms (ed. A. J. B. Zehnder), pp. 333-372, Wiley.

  • Ferdelman, T. G., Lee, C., Pantoia, S., Harder, J., Bebout, B., and Fossing, H. (1997) Sulfate reduction and methanogenesis in Thioploca-dominated sediment off the coast of Chile. Geochimica Cosmochimica Acta 61, 3065-3079.

    Google Scholar 

  • Fossing, H. (1995) 35S-radiolabelling to probe biogeochemical cycling. In Geochemical Transformations of Sedimentary Sulfur (eds. M. A. Vairavamurthy and M. A. A. Schoonen), pp. 348-364, ACS Symposium Series 612.

  • Fry, B., Cox, J. Gest, H., and Hayes, J. M. (1986) Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds. J. Bact. 165, 328-330.

    Google Scholar 

  • Goldhaber, M. B. and Kaplan, I. R. (1974) The sulfur cycle. In The Sea, Vol. 5 (ed. E. D. Goldberg), pp. 569-655, Wiley.

  • Goldhaber, M. B. and Kaplan, I. R. (1980) Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar. Chem. 9, 95-143.

    Google Scholar 

  • Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens, C. S., and Berner, R. A. (1977) Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM group. Amer. J. Sci. 277, 193-237.

    Google Scholar 

  • Goñi, M. A. and Eglinton, T. I. (1996) Stable carbon isotopic analysis of lignin-derived CuO oxidation products by isotope ratio monitoring-gas chromatography-mass spectrometry (irm-GC-MS). Org. Geochem. 24, 610-615.

    Google Scholar 

  • Habicht, K. S. and Canfield, D. E. (1996) Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382, 342-343.

    Google Scholar 

  • Habicht, K. S. and Canfield, D. E. (1997) Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim. Cosmochim. Acta 61, 5351-5361.

    Google Scholar 

  • Henrichs, S. M. and Reeburgh, W. S. (1987) Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191-237.

    Google Scholar 

  • Ishiye, T. and Jones, M. L. (1961) On the hydrography of the St. Andrew Bay System. Limnol. Oceanogr. 6, 302-311.

    Google Scholar 

  • Iversen, N. and Jørgensen, B. B. (1994) Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim. Cosmochim. Acta 57, 571-578.

    Google Scholar 

  • Jørgensen, B. B. (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22, 814-832.

    Google Scholar 

  • Jørgensen, B. B. (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation from mathematical models. Geomicrobiol J. 1, 29-47.

    Google Scholar 

  • Jørgensen, B. B. (1979) A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochim. Cosmochim. Acta 43, 363-374.

    Google Scholar 

  • Jørgensen, B. B. (1983) Processes at the sediment-water interface, In The Major Biogeochemical Cycles and Their Interactions (eds. B. Bolin and R. C. Cook) Scope 21, pp. 477-509, Wiley.

  • Kaplan, I. R. and Rittenberg, S. C. (1964) Microbiological fractionation of sulphur isotopes. J. Gen Microbiol. 34, 195-212.

    Google Scholar 

  • Kemp, A. L. W. and Thode, A. G. (1968) The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies. Geochim. Cosmochim. Acta 32, 71-91.

    Google Scholar 

  • Kohnen, M. E. T., Sinninghe Damsté, J. S., ten Haven, H. L., and de Leeuw, J. W. (1989) Early incorporation of polysulphides in sediment organic matter. Nature 341, 640-641.

    Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J. (1991) Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments. Environ. Sci. Technol. 25, 1062-1067.

    Google Scholar 

  • Luther, G.W. III, Shellenbarger, P. A., and Brendel, P. J. (1996) Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters. Geochim. Cosmochim. Acta 60, 951-960.

    Google Scholar 

  • Martens, C. S. and Klump, V. (1984) Biogeochemical cycling in an organic-rich sediment 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta 48, 1987-2004.

    Google Scholar 

  • McCready, R. G. L. (1975) Sulphur isotope fractionation by Desulfovibrio and Desulfotomaculum species. Geochim. Cosmochim. Acta 39, 1395-1401.

    Google Scholar 

  • Nixon, S.W. (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41, 199-220.

    Google Scholar 

  • Price, F. T. and Shieh, Y. N. (1979) Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures. Chem. Geol. 27, 245-253.

    Google Scholar 

  • Raiswell, R., Buckley, F., Berner, R. A., and Anderson, T. F. (1988) Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sed. Pet. 58, 812-819.

    Google Scholar 

  • Raiswell, R., Canfield, D. E., and Berner, R. A. (1994) A comparison of iron extraction methods for the determination of degree of pyritization and the recognition of iron-limited pyrite formation. Chem. Geol. 111, 101-110.

    Google Scholar 

  • Raiswell, R. and Canfield, D. E. (1996) Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochim. Cosmochim. Acta 60, 2777-2787.

    Google Scholar 

  • Richardson, K. and Jørgensen, B. B. (1996) Eutrophication: Definition, history and effects. In Eutrophication in Coastal Marine Ecosystems (eds. B. B. Jørgensen and K. Richardson), Coastal Estuarine Studies 52, pp. 1-20, American Geophysical Union.

  • Sarkanen, K. V. and Ludwig, C. H. (1971) Lignins: Occurrence, Formation, Structure and Reactions. Wiley Interscience.

  • Smetacek, V., Bathmann, U., Nöthig, E-M., and Scharek, R. (1991) Coastal eutrophication: Causes and consequences. In Ocean Margin Processes in Global Change (eds. R. F. C. Mantoura et al.), pp. 251-280, Wiley.

  • Soutaert, K., Herman, P. M. J., and Middelburg, J. J. (1996) A model of early diagenetic processes from the shelf to abyssal depths. Geochim. Cosmochim. Acta 60, 1019-1040.

    Google Scholar 

  • Thamdrup, B., Finster, K., Hansen, J. W., and Bak, F. (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Appl. Env. Microbiol. 59, 101-108

    Google Scholar 

  • Thamdrup, B., Fossing, H., and Jørgensen, B. B. (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58, 5115-5129.

    Google Scholar 

  • Vollenweider, R. A. (1992) Coastal marine eutrophication: principles and control, In Marine Coastal Eutrophication (eds. R. A. Vollenweider et al.), pp. 1-20, Elsevier, Amsterdam.

    Google Scholar 

  • Wang, Y. and van Cappellen, P. (1996) A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60, 2993-3014.

    Google Scholar 

  • Westrich, J. T. and Berner, R. A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr. 29, 236-249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brüchert, V., Pratt, L.M. Stable Sulfur Isotopic Evidence for Historical Changes of Sulfur Cycling in Estuarine Sediments from Northern Florida. Aquatic Geochemistry 5, 249–268 (1999). https://doi.org/10.1023/A:1009661812641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009661812641

  • sulfate
  • stable sulfur isotopes
  • delta 34S
  • porewaters
  • bacterial sulfate reduction
  • diffusion modeling
  • sulfide reoxidation
  • pyrite
  • anthropogenic effects
  • organic contamination
  • stable carbon isotopes
  • delta 13C
  • estuarine sediments
  • Florida
  • St. Andrew Bay
  • pulp mill effluent
  • lignin
  • lignocellulose