Skip to main content
Log in

Janus faces of ras: anti or pro-apoptotic?

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cell population homeostasis is a balance between cell proliferation on one hand and the rate of cell loss on the other hand. Normal tissue homeostasis requires the physiological deletion of cells by activation of apoptosis, a genetically determined program of autonomous cell death. ras is most probably the most important oncogene in human cancer. It is mutated in 30% of all tumors especially those of the gastrointestinal tract. In regulating apoptosis ras has many faces. it has both negative and positive effects depending on the stimulation and cell type. The responses of cells to ras signaling depends on the level of Ras expression, the activity of various pathways, and which of the cell cycle check points are functioning. New farnesyl transferase inhibitors and non-steroidal anti-inflammatory compounds may provide a new strategy for novel therapeutic modalities in the treatment of human cancer. The first clinical trials have been initiated, preliminary results are promising, although no firm results are yet available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deschner EE. Kinetics of normal, preneoplastic, and neoplastic colonic epithelium. In: Moyer MP and Poste GH, Eds. Colon Cancer Cells. San-Diego Academic Press, Inc., 1990: 41–61.

  2. Williams GT, Smith CA. Molecular regulation of apoptosis: Genetic controls on cell death. Cell 1993; 74: 777–779.

    Google Scholar 

  3. Cosulich S, Clarke P. Apoptosis: Does stress kill? Curr Biol 1996; 6: 1586–1588.

    Google Scholar 

  4. Chinnaiyan AM, Dixit VM. The cell death machine. Curr Biol 1996; 6: 555–562.

    Google Scholar 

  5. Bos JL. Ras oncogenes in human cancer: A review. Cancer Res 1989; 49: 4682–4689.

    Google Scholar 

  6. Weinberg RA. Racing to the Beginning of the Road. New York: Harmony Books, 1996.

    Google Scholar 

  7. Marshall CJ. Ras effectors. Curr Opin Cell Biol 1996; 8: 197–204.

    Google Scholar 

  8. Gomez J, Martinez-AC, Fernandez B, Garcia A, Rebollo A. Ras activation leads to cell proliferation or apoptotic death upon IL-2 stimulation or lymphokine deprivation, respectively. Eur J Immunol 1997; 27: 1610–1618

    Google Scholar 

  9. Downward J. Cell cycle: Routine role for Ras. Curr Biol 1997; 7: 258–260.

    Google Scholar 

  10. Barbacid M. Ras genes. Ann Rev Biochem 1987; 56: 779–827.

    Google Scholar 

  11. Weinberg RA. The action of oncogene in the cytoplasm and nucleus. Science 1985; 230: 770–776.

    Google Scholar 

  12. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Google Scholar 

  13. Bokoch GM, Der CJ. Emerging concepts in the ras superfamily of GTP-binding proteins. FASEB J 1993; 7: 750–759.

    Google Scholar 

  14. Arends MJ, McGregor AH, Toft NJ, Brown EJ, Wyllie AH. Susceptibility to apoptosis is differentially regulated by c-myc and mutated Ha-ras oncogenes and is associated with endonuclease availability. Br J Cancer 1993; 68: 1127–1133.

    Google Scholar 

  15. Wyllie AH. Apoptosis: The 1992 Frank Rose memorial lecture. Br J Cancer 1992; 67: 205–208.

    Google Scholar 

  16. Wyllie AH, Rose KA, Morris RG, Steel CM, Foster E, Spandidos DA. Rodent fibroblast tumors expressing human myc and ras genes: Growth, metastasis and endogenous oncogene expression. Br J Cancer 1987; 56: 251–259.

    Google Scholar 

  17. Downward J. Ras signaling and apoptosis. Current Opinion Genetics & Development 1998; 8: 49–54.

    Google Scholar 

  18. Marte BM, Downward J. PKB/Akt: Connecting PI3-kinase to cell survival and beyond. Trends Biochem Sci 1997; 22: 355–358.

    Google Scholar 

  19. Stephens LR, Jackson TR, Hawkins PT. Agonist-stimulated synthesis of phosphatidylinositol (3,4,5)-trisphosphate: A new intercellular signalling system. Biochim Biophys Acta 1993; 1179: 27–75.

    Google Scholar 

  20. Ward RL, Todd AV, Santiago F, O'Connor T, Hawkins NJ. Activation of the K-ras oncogene in colorectal neoplasm is associated with decreased apoptosis. Cancer 1997; 79: 1106–1113.

    Google Scholar 

  21. Singh J, Kellof G, Reddy BS. Intermediate biomarkers of colon cancer: Modulation of expression of ras oncogene by chemopreventive agents during azoxymethane induced colon carcinogenesis. Carcinogenesis 1993; 14: 699–704.

    Google Scholar 

  22. Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Barrington RE, Windle JJ. Differential regulation of cell cycle characteristics and apoptosis in MMTV-myc-ras mouse mammary tumors. Cancer Res 1997; 57: 600–603.

    Google Scholar 

  23. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994; 124: 619–626.

    Google Scholar 

  24. Lin HJ, Eviner V, Prendergast GC, Whitw E. Activated H-ras rescues E1A-induced apoptosis and cooperates with E1A to overcome p53-dependent growth arrest. Mol Cell Biol 1995; 15: 4536–4544.

    Google Scholar 

  25. Rak J, Mitsuhashi Y, Erdos V, Huang S, Filmus J, Kerbel RS. Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: Suppression by mutant c-H-ras oncogene expression. J Cell Biol 1995; 131: 1587–1598.

    Google Scholar 

  26. Buick RN, Filmus J, Quaroni A. Activated H-ras transforms rat intestinal epithelial cells with expression of a-TGF. Exp Cell Res 1987; 170: 300–309.

    Google Scholar 

  27. Filmus J, Robles AL, Shi W, Wong MU, Colombo LL, Conti CJ. Induction of cyclin D1 overexpression by activating ras. Oncogene 1994; 9: 3627–3633.

    Google Scholar 

  28. Arber N, Sutter T, Miyake M, et al. Increased expression of cyclin D1 and the Rb tumor suppressor gene in c-K-ras transformed rat enterocytes. Oncogene 1996; 12: 1903–1908.

    Google Scholar 

  29. Arber N, Han EK-H, Sgambato A, et al. Transformation of rat enterocytes by a c-K-ras oncogene increases resistance to growth inhibition and apoptosis induced by sulindac sulfide. Gastroenterology 1997; 113: 1892–1900.

    Google Scholar 

  30. Del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    Google Scholar 

  31. Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/AKT cellular survival pathway. EMBO J 1997; 16: 2783–2793.

    Google Scholar 

  32. Marte BM, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. PI 3-kinase and PKB/Akt act as an effector pathway for R-Ras. Curr Biol 1997; 7: 63–70.

    Google Scholar 

  33. Yao RJ, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 1995; 267: 2003–2006.

    Google Scholar 

  34. Sakai N, Ogiso Y, Fujita H, Watari H, Koike T, Kuzumaki N. Induction of apoptosis by a dominant negative H-ras mutant (115Y) in k562 cells. Exp Cell Res 1994; 215: 131–136.

    Google Scholar 

  35. Kinoshita T, Yokota T, Arai K, Miyajima A. Regulation of bcl-2 expression by oncogenic ras protein in hematopoietic cells. Oncogene 1995; 10: 2207–2212.

    Google Scholar 

  36. Kinoshita T, Shirouzu M, Kamia A, Hashimoto K, Yokoyama S, Miyajima A. Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21 ras in IL-3-dependent hematopoietic cells. Oncogene 1997; 15: 619–627.

    Google Scholar 

  37. Cortez D, Stoica G, Pierce JH, Pendergast AM. The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Rasdependent signaling pathway. Oncogene 1996; 13: 2589–2594.

    Google Scholar 

  38. Mayo MW, Wang C-Y, Corgswell PC, et al. Requirement of NF-kB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 1997; 278: 1812–1815.

    Google Scholar 

  39. Ljunfdahl S, Shoshan MC, Linder S. Inhibition of the growth of 12v-ras-transformed rat fibroblasts by acetylsalicyclic acid correlates with inhibition of NF-kB. Anticancer Drugs 1997; 8: 62–66.

    Google Scholar 

  40. Kauffman-Zeh A, Rodriguez-Viciana F, Ulrich E, et al. Suppression of c-myc induced apoptosis by Ras signaling through PI(3) K and PKB. Nature 1997; 385: 544–548.

    Google Scholar 

  41. Fukasawa K, Vande Woude GF. Synergy between the mos/mitogen activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol Cell Biol 1997; 17: 506–518.

    Google Scholar 

  42. Lloyd Ac, Obermuller F, Staddon S, Barth C, McMahon M, Land H. Cooperating ontogenes target cyclin/cdk activity. Genes Dev 1997; 11: 663–677.

    Google Scholar 

  43. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Google Scholar 

  44. Nikiforov MA, Hagen K, Ossovskaya VS, et al. p53 modulation of anchorage independent growth and experimental metastasis. Oncogene 1996; 13: 1709–1719.

    Google Scholar 

  45. Fukasawa K, Rulong S, Resau J, Pinto da Silva P, Woude GF. Overexpression of mos oncogene product in Swiss 3T3 cells induces apoptosis preferentially during S-phase. Oncogene 1995; 10: 1–8.

    Google Scholar 

  46. Cahill MA, Peter ME, Kischkel FC, et al. CD95 (APO-1/FAS) induces activation of SAP kinases downstream of ICE-like proteases. Oncogene 1996; 13: 2087–2096.

    Google Scholar 

  47. Gulbins E, Bissonnette R, Mahboubi A, et al. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 1995; 2: 341–351.

    Google Scholar 

  48. Latinis KM, Carr LL, Peterson EJ, Norian LA, Eliason SL, Koretzky GA. Regulation of CD95 (Fas) ligand expression by TCR-mediated signaling events. J Immunol 1997; 158: 4602–4611.

    Google Scholar 

  49. Gomez J, Martinez-A C, Fernandez B, Garcia A, Rebollo A. Critical role of ras in the proliferation and prevention of apoptosis mediated by IL-2. J Immunol 1996; 157: 2272–2281.

    Google Scholar 

  50. Herr I, Wilhelm D, Böhler T, Angel P, Debatin KM. Activation of CD 95 (APO-1/FAS) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J 1997; 16: 6200–6208.

    Google Scholar 

  51. Chan TA, Morin PJ, Vogelstein B, Kinzler KW. Mechanisms underlying nonsteroidal antiinflammatory drug mediated apoptosis. Proc Natl Acad Sci USA 1998; 95: 681–686.

    Google Scholar 

  52. Downward J. KSR: A novel player in the RAS pathway. Cell 1995; 83: 831–834.

    Google Scholar 

  53. Coopersmith CM, Chandrasekaran C, McNevin MS, Gordon JI. Bi-transgenic mice reveal that K-rasval 112 augments a p53-independent apoptosis when small intestinal villus enterocytes reenter the cell cycle. J Cell Biol 1997; 138: 167–179.

    Google Scholar 

  54. Juo P, Kuo CJ, Reynolds SE, et al. FAS activation of the p38 mitogen-activated protein kinase signaling pathway requires ICE/CED-3 family proteases. Mol Cell Biol 1997; 17: 24–35.

    Google Scholar 

  55. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326–1331.

    Google Scholar 

  56. Lenczowski JM, Dominguez L, Eder AM, King LB, Zacharchuk CM, Ashwell JD. Lack of a role for UN kinase and AP-1 in Fas-induced apoptosis. Mol Cell Biol 1997; 17: 170–181.

    Google Scholar 

  57. Wang H-G, Millan JA, Cox AD, et al. R-Ras promotes apoptosis caused by growth factor deprivation via a bcl-2 suppressible mechanism. J Cell Biol 1995; 129: 1103–1114.

    Google Scholar 

  58. Marnett L. Aspirin and the potential role of prostaglandins in colon cancer. Cancer Res 1992; 52: 5575–5589.

    Google Scholar 

  59. Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxidase synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1993; 268: 6610–6614.

    Google Scholar 

  60. Eberhart CE, Dubois RN. Eicosanoids and the gastrointestinal tract. Gastroenterology 1995; 109: 285–301.

    Google Scholar 

  61. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, Dubois RN. Up-regulation of cyclooxygynase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183–1188.

    Google Scholar 

  62. Kargman SL, O'Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothy S. Expression of prostaglandin G/H synthase-1 and-2 protein in human colon cancer. Cancer Res 1995; 55: 2556–2559.

    Google Scholar 

  63. Shiff JS, Koustos MI, Qiao L, Rigas B. Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells. Effects on cell cycle and apoptosis. Exp Cell Res 1996; 222: 179–188.

    Google Scholar 

  64. Shiff SJ, Qiao L, Tsai L-L, Rigas B. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cell. J Clin Invest 1995; 95: 491–503.

    Google Scholar 

  65. Goldberg Y, Nassiff II, Pittas A, et al. The anti-proliferative effect of sulindac and sulindac sulfide on HT-29 colon cancer cells: Alterations in tumor suppressor and cell cycle-regulatory proteins. Oncogene 1996; 12: 893–901.

    Google Scholar 

  66. Piazza GA, Rahm ALK, Krutzsch M, et al. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res 1995; 55: 3110–3116.

    Google Scholar 

  67. Sheng GG, Shao J, Sheng H, et al. A selective cyclooxygenase 2 inhibitor suppresses the growth of H-ras-transformed Rat intestinal epithelial cells. Gastroentrology 1997; 1891: 1883–1891.

    Google Scholar 

  68. O'Neill G, Hutchinson AF. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Left 1993; 330: 156–160.

    Google Scholar 

  69. Williams CW, DuBois RN. Prostaglandin endoperoxide synthase: Why two isoforms? Am J Physiol 1996; 270: G393-G400.

    Google Scholar 

  70. Sano H, Kawahito Y, Wilder R, et al. Expression of cyclooxygenase 1 and 2 in human colerctal cancer. Cancer Res 1995; 55: 3785–3789.

    Google Scholar 

  71. DuBois RN, Radhika A, Reddy BS, Entingh AJ. Increased cylooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroentrology 1996; 110: 1259–1262.

    Google Scholar 

  72. Sheng H, Shao J, Kirkland SC, et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 1997; 97: 2254–2259.

    Google Scholar 

  73. Harris N, Kaznov D, Pick M, et al. C-K-RAS transformed rat enterocytes (R1) are more sensitive than normal enterocytes (IEC18) to growth inhibition and apoptosis induced by sulindac sulfone and nimesulid. Gastroenterology 1998; 612: 114a.

    Google Scholar 

  74. Harris N, Kaznov D, Moshkowitz M, et al. Heterologous expression of the pro-apoptotic gene bak in ras transformed enterocytes results in partial reversion of their transformed phenotype. Gastroenterology 1998; 612: 114a.

    Google Scholar 

  75. Moasser MM, Sepp-Lorenzo L, Kohl NE, et al. Farnesyl transferase inhibitors cause enhanced mitotic sensetivity to taxol and epothilones. Proc Natl Acad Sci USA 1998; 95: 1369–1374.

    Google Scholar 

  76. Ura H, Obara T, Itoh A, et al. Selective cytotoxicity of farnesylamine to pancreatic carcinoma cells and Ki-ras-transformed fibroblasts. Mol Carcinog 1998; 21: 93–99.

    Google Scholar 

  77. Hung WC, Chaung LY. The farnesyltransferase inhibitor, FPT inhibitor III upregulate Bax and Bcl-Xs expression and induces apoptosis in human ovarian cancer cells. Int J Oncol 1998; 12: 137–140.

    Google Scholar 

  78. Lebowitz PF, Sakamuro D, Prendergast GC. Farnesyltransferase inhibitors induce apoptosis of ras transformed cells denied substratum attachment. Cancer Research 1997; 57: 708–713.

    Google Scholar 

  79. Sebti S, Hamilton AD. Inhibitors of prenyltransferases. Curr Opin Oncol 1997; 9: 557–561.

    Google Scholar 

  80. Barinaga M. From bench top to bedside. Science 1997; 278: 1037–1039.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arber, N. Janus faces of ras: anti or pro-apoptotic?. Apoptosis 4, 383–388 (1999). https://doi.org/10.1023/A:1009651406017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009651406017

Navigation