Evaluation of the Microporosity of Aluminium Pillared Montmorillonite: Optimisation of the Exchange Process

Abstract

Aluminium pillared clays were synthesised under various experimental conditions starting from a sodium montmorillonite clay (Hithix). The influence of sonication, successive exchange and a constant pH during and after the intercalation process were investigated as important synthesis parameters in the optimisation of these materials. The concentration of aluminium in the pillaring solution, the ratio of Al/clay and the aging time and temperature were kept constant throughout this work. This optimisation is necessary in order to obtain high-quality Al-PILCs, as could be deduced from a theoretical study on the potential and limitations of pillared clay substrates. The ultrasonic treatment of the suspension during the synthesis is responsible for a significant increase in porosity. Despite the promising nature of the successive exchange technique, a reduction of the porosity is observed. Instead of a homogenisation process, an accumulation of aluminium in the interlayer space occurred. This expected homogenisation takes place when the synthesis of the pillared clay was carried out at constant pH. In this case, nitrogen BET surface areas of 458 m2/g and micropore volumes of 0.17 cm3/g were obtained after calcination of the intercalated clays at 400°C.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. Maes, I. Heylen, P. Cool, M. De Bock, C. Vanhoof, and E.F. Vansant, J. of Porous Materials 3, 47–59 (1996).

    Google Scholar 

  2. 2.

    M. De Bock, N. Maes, P. Cool, I. Heylen, and E.F. Vansant, J. of Porous Materials 3, 207–216 (1996).

    Google Scholar 

  3. 3.

    L. Storaro, M. Lenarda, R. Ganzerla, and A. Rinaldi, Microporous Materials 6, 55–63 (1996).

    Google Scholar 

  4. 4.

    L.J. Michot and T.J. Pinnavaia, Chem. Mater. 4, 1433–1437 (1992).

    Google Scholar 

  5. 5.

    J. Krajcovic, P. Hudec, and F. Grejtak, React. Kinet. Catal. Lett. 54(1), 87–97 (1995).

    Google Scholar 

  6. 6.

    M. Brotas de Carvalho, J. Pires, and A.P. Carvalho, Microporous Materials 6, 65–77 (1996).

    Google Scholar 

  7. 7.

    A. Gil, A. Massinon, and P. Grange, Microporous Materials 4(5), 369–378 (1995).

    Google Scholar 

  8. 8.

    A. Molinard, A. Clearfield, H.Y. Zhu, and E.F. Vansant, Microporous Materials 3, 109–116 (1994).

    Google Scholar 

  9. 9.

    J.Y. Bottero, J.M. Cases, F. Fiessinger, and J.E. Poirier, J. Phys. Chem. 84, 2933–2939 (1980).

    Google Scholar 

  10. 10.

    J.Y. Bottero, D. Tchoubar, J.M. Cases, and F. Fiessinger, J. Phys. Chem. 86, 3667–3673 (1982).

    Google Scholar 

  11. 11.

    P.M. Bertsch, G.W. Thomas, and R.I. Barnhisel, Soil. Sci. Soc. Am. 50, 825–830 (1986).

    Google Scholar 

  12. 12.

    Z. Ge, D. Li, and T.J. Pinnavaia, Microporous Materials 3, 165–175 (1994).

    Google Scholar 

  13. 13.

    R.A. Schoonheydt, J. van den Eynde, H. Tubbax, H. Leeman, M. Stuyckens, I. Lenotte, and W.E.E. Stone, Clays and Clay Minerals 41(5), 598–607 (1993).

    Google Scholar 

  14. 14.

    R.A. Schoonheydt, H. Leeman, A. Scorpion, I. Lenotte, and P. Grobet, Clays and Clay Minerals 42(5), 518–525 (1994).

    Google Scholar 

  15. 15.

    J.H. De Boer, B.G. Linsen, and T.H.J. Osinga, J. Catalysis 4, 643 (1965).

    Google Scholar 

  16. 16.

    H.Y. Zhu, N. Maes, A. Molinard, and E.F. Vansant, Microporous Materials 3, 235 (1994).

    Google Scholar 

  17. 17.

    N. Maes, H.Y. Zhu, and E.F. Vansant, J. Porous Materials 2, 97 (1995).

    Google Scholar 

  18. 18.

    D.E.W. Vaughan, Catalysis Today 2, 187 (1988).

    Google Scholar 

  19. 19.

    J.R. Jones and J.H. Purnell, Catalysis Letters 18, 137 (1993).

    Google Scholar 

  20. 20.

    F. Figueras, Z. Klapyta, P. Massiani, Z. Mountassir, D. Tichit, F. Fajula, C. Gueguen, J. Bousquet, and A. Auroux, Clays and Clay Minerals 38(3), 257–264 (1990).

    Google Scholar 

  21. 21.

    T.J. Pinnavaia, M.-S. Zhou, S.D. Landau, and R.H. Raythatha, J. of Molecular Catalysis 27, 195–212 (1984).

    Google Scholar 

  22. 22.

    A. Schutz, W.E.E. Stone, G. Poncelet, and J.J. Fripiat, Clays and Clay Minerals 35(4), 251–261 (1987).

    Google Scholar 

  23. 23.

    M.D.A. Bolland, A.M. Posner, and J.P. Quirk, Clays and Clay Minerals 28(6), 412–418 (1980).

    Google Scholar 

  24. 24.

    G.N. White, L.W. Zelazny, Clays, and Clay Minerals 36(2), 141–146 (1988).

    Google Scholar 

  25. 25.

    A. Dyer and T. Gallardo, in Recent Developments in Ion Exchange, edited by P.A. Williams and M.J. Hudson (Elsevier Science Publishers, 1990), p. 75–84.

  26. 26.

    A. Molinard, Physicochemical and Gas Adsorption Properties of Ion Exchanged Alumina Pillared Clays, Ph.D. Thesis, Univ. of Antwerp (UIA), Belgium, 1994, p.14 and 121–144.

    Google Scholar 

  27. 27.

    K. Nakanishi and P.H. Solomon, Infrared Absorption Spectroscopy (Holden-Day, Inc., Oakland), p. 40.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Bock, M., Nijs, H., Cool, P. et al. Evaluation of the Microporosity of Aluminium Pillared Montmorillonite: Optimisation of the Exchange Process. Journal of Porous Materials 6, 323–333 (1999). https://doi.org/10.1023/A:1009649127144

Download citation

  • Al-pillared clays
  • montmorillonite
  • microporosity
  • PILC
  • pore size distribution