Skip to main content
Log in

Genetic Status and Fluctuating Asymmetry in an Endangered Population of the Moth Dysauxes ancilla L. (Lepidoptera: Ctenuchidae)

  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Genetic status and fluctuating asymmetry (FA) were assessed in a small, isolated and endangered population of the moth Dysauxes ancilla in Sweden. A sample from the German population, within the continuous breeding area of the species, was used for comparison. The levels of FA were significantly higher in the Swedish population, indicating a reduced ability to withstand developmental stress. Two polymorphic loci showed significantly higher variation in the Swedish population, indicating that there are no serious effects on genetic factors. Therefore, it is suggested that the increased level of FA in the Swedish population is due to the stress of living in an ecologically marginal habitat. The Swedish population is a northern outpost separated from the continuous distribution area of species and environmental stress caused by variable and extreme abiotic factors, for example climatic conditions, could explain a higher FA. However, it is still an open question if a higher FA from environmental stress also constitutes an increased extinction risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betzholtz, P.-E. and Lindeborg, M. (1996) Is there a future for the handmaid, Dysauxes ancilla (Lepidoptera: Ctenuchidae) on the Baltic island of Öland? Ent. Tidskr. 117, 103-11.

    Google Scholar 

  • Bishop, J.A. and Cook, L.M. (eds) (1981) Genetic consequences of man-made change. London: Academic Press.

    Google Scholar 

  • Brookes, M.I., Graneau, Y.A., King, P., Owen, C.R., Thomas, C.D. and Mallet, J.L.B. (1997) Genetic analyses of founder bottlenecks in the rare British butterfly Plebejus argus. Conser. Biol. 11, 648-61.

    Google Scholar 

  • Clarke, G.M. (1997) The genetic and molecular basis of developmental stability: the Lucila story. TREE 12, 89-91.

    Google Scholar 

  • Cushman, J.H., Boggs, C., Weiss, S.B., Murphy, D.D., Harvey, A.W. and Ehrlich, P.R. (1994) Estimating female reproductive success of a threatened butterfly: influence of emergence time and hostplant phenology. Oecologica 99, 194-200.

    Google Scholar 

  • Ehnström, B., Gärdenfors, U. and Lindelöw, Å. (1993) Swedish red list of invertebrates 1993. Uppsala: Databanken för hotade arter.

    Google Scholar 

  • Ellegren, H., Savolainen, P. and Rosén, B. (1996) The genetical history of an isolated population of the endangered grey wolf Canis lupus: a study of nuclear and mitochondrial polymorphism. Phil. Trans. Roy. Soc. Lond. Ser. B 351, 1661-69.

    Google Scholar 

  • Frankham, R. and Ralls, K. (1998) Inbreeding leads to extinction. Nature 392, 441-2.

    Google Scholar 

  • Hoffmann, A.A. and Parsons, P.A. (1991) Evolutionary genetics and environmental stress. Oxford: Oxford University Press.

    Google Scholar 

  • Lande, R. (1988) Genetics and demography in biological conservation. Science 241, 1455-60.

    PubMed  Google Scholar 

  • Lande, R. (1995) Mutation and conservation. Conser. Biol. 9, 782-91.

    Google Scholar 

  • Laikre, L. and Ryman, N. (1991) Inbreeding depression in a captive wolf (Canis lupus) population.Conser. Biol. 5, 33-40.

    Google Scholar 

  • Laikre, L., Ryman, N. and Lundh, N.G. (1997) Estimated inbreeding in a small, wild muskox Ovibos moshatus population and its possible effects on population reproduction. Biol. Conser. 79, 197-204.

    Google Scholar 

  • Leary, R.F. and Allendorf, F.W. (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. TREE 4, 214-7.

    Google Scholar 

  • Mason, L.G., Ehrlich, P.R. and Emmel, T.C. (1965) The population biology of the butterfly Euphydryas editha. V. Character clusters and asymmetry. Evolution 21, 85-91.

    Google Scholar 

  • Mitton, J.B. (1993) Theory and data pertinent to the relationships between heterozygosity and fitness. In The natural history of inbreeding and outbreeding (N. Thornhill, ed), pp. 17-41. Chicago: Chicago University Press.

    Google Scholar 

  • Norusis, M.J. (1993) SPSS for Windows. Release 6.0. Chicago.

  • Otronen, M. (1997) Asymmetry in insects: are symmetrical individuals more successful than others? Ent. Tidskr. 118, 65-71.

    Google Scholar 

  • Palmer, A.R. and Strobeck, C. (1986) Fluctuating asymmetry: measurements, analysis, patterns. Ann. Rev. Ecol. Syst. 17, 391-421.

    Google Scholar 

  • Parsons, P.A. (1990) Fluctuating asymmetry: an epigenic measure of stress. Biol. Rev. 65, 131-45.

    PubMed  Google Scholar 

  • Ralls, K. and Ballou, J. (1983) Extinction: lessons from zoos. In Genetics and conservation (C.M. Schonewald-Cox, S.M. Chambers, B. MacBryde, and W.L. Thomas, eds), pp. 164-84. Menlo Park: Benjamin/Cummings.

    Google Scholar 

  • Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W. and Hanski, I. (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491-4.

    Google Scholar 

  • Saura, A., Lokki, J., Lankinen P. and Soumalainen, E. (1976) Genetic polymorphsm and evolution in parthogenetic animals. III. Tetraploid Otiorhyncus scaber. Hereditas 82, 79-100.

    PubMed  Google Scholar 

  • Schmidt, P. (1991) Beiträge zur Insektenfauna der DDR: Lepidoptera-Arctiidae, Nolidae, Ctenuchidae, Drepanidae, Cossidae und Hepialidae. Beitr. Ent. Berlin 41, 123-236.

    Google Scholar 

  • Selander, R.K., Smith, M.H., Yang, S.Y., Johnson, E.E. and Gentry, J.B. (1971) Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Stud. Genet. 6, 49-90.

    Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. (1987) Introduction to biostatistics. New York: W.H. Freeman and company.

    Google Scholar 

  • Soulé, M. and Baker B. (1968) Phenetics of natural populations. IV. The population asymmetry parameter in the butterfly Coenonympha tullia. Heredity 23, 611-4.

    PubMed  Google Scholar 

  • Stille, B. (1985) Population genetics of the parthogenetic gall wasp Diplolepis rosae. Genetica 67, 145-51.

    Google Scholar 

  • Thomas, C.D. (1990) What do real population dynamics tell us about minimum viable population sizes? Conser. Biol. 4, 324-7.

    Google Scholar 

  • Thomas, C.D. (1996) Essential ingredients of real metapopulations, exemplified by the butterfly Plebejus argus. In Aspects of the genesis and maintenance of biological diversity (M.E. Hochberg, J. Clobert and R. Barbault, eds), pp. 292-307. Oxford: Oxford University Press.

    Google Scholar 

  • Tigerstedt, P.M.A. (1994) Adaptation, variation and selection in marginal areas. Euphytica 77, 171-4.

    Google Scholar 

  • Tsubaki, Y. (1998) Fluctuating asymmetry of the oriental fruit fly (Dacus dorsalis) during the process of its extinction from the Okinawa islands. Conser. Biol. 12, 926-9.

    Google Scholar 

  • Van Valen, L. (1962) A study of fluctuating asymmetry. Evolution 16, 125-42.

    Google Scholar 

  • Wilson, J.B., Ronghua, Y., Mark, A.F. and Agnew A.D.Q. (1991) A test of the low marginal variance (LMV) theory, in Leptospermum scoparium. Evolution 45, 780-4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betzholtz, PE. Genetic Status and Fluctuating Asymmetry in an Endangered Population of the Moth Dysauxes ancilla L. (Lepidoptera: Ctenuchidae). Journal of Insect Conservation 4, 93–98 (2000). https://doi.org/10.1023/A:1009648622775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009648622775

Navigation