Aquatic Geochemistry

, Volume 4, Issue 3–4, pp 403–427 | Cite as

The Multiple Sources and Patterns of Methane inNorth Sea Waters

  • Gregor Rehder
  • Robin S. Keir
  • Erwin Suess
  • Thomas Pohlmann


The methane concentration in the atmosphere andsurface water was surveyed along 58° N acrossthe North Sea. In addition, the vertical methanedistribution in the water column was determined at sixstations along the transect. The methane contents ofthe surface water as well as in the water column wereextremely inhomogeneous. Input by freshwater fromriver discharge and injection of methane from thesediment were both observed. The survey continued fromthe western side of the North Sea to the Elbe Riverestuary. The Elbe River appears to have low methaneconcentrations compared to other European rivers, itsaverage input into the North Sea is estimated to be70 nmol s-1 of methane. Near 58° N,1°40' E, an abandoned drill site releases about 25 % ofthe North Sea's emission of methane to the atmosphere.The advective methane transport induced by watercirculation was assessed for May 16, 1994, using a 3-DNorth Sea circulation model. For the period of thissurvey, the North Sea's source strength foratmospheric methane is estimated using in situwind velocities. In comparison to the advectivetransport by the water circulation, the gas flux tothe atmosphere appears to be the dominant sink ofNorth Sea methane. This flux is estimated to bebetween 1500 · 106 mol a-1 and 3100 ·106mol a-1, depending on the relationbetween wind speed and gas transfer velocity.

methane trace gases North Sea air-sea exchange 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backhaus J. O. (1985) A three-dimensional model for the simulation of shelf sea dynamics. Dt. hydrogr. Z. 38, 165–187.Google Scholar
  2. Bange H. W., Bartell U. H., Rapsomanikis S., and Andreae M. O. (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Glob. Biochem. Cycl. 8, 465–480.Google Scholar
  3. Bates T. S., Kimberly K. C., Johnson J. E., and Gammon R. H. (1996) A reevaluation of the open ocean source of methane to the atmosphere. J. Geophys. Res. 101, 6953–6961.Google Scholar
  4. Blunier T., Chappellaz J. A., Schwander J., Barnola J.-M., Desperts T., Stauffer B., and Raynaud D. (1993) Atmospheric methane, record from a Greenland ice Core over the last 1000 years. Geophys. Res. Lett. 20, 2219–2222.Google Scholar
  5. BSH (1994) North Sea Handbook: Eastern Part. Bundesamt für Seeschiffahrt und Hydrographie, Hamburg.Google Scholar
  6. Bussmann I. (1994) Verteilung und Steuergrößen der Aktivität methan-oxidierender Bakterien in Randmeeren des Nordatlantiks. Berichte aus dem Sonderforschungsbereich 313, Christian-Albrechts Universität, Kiel.Google Scholar
  7. Butler J. H., Jones R. D., Garber J. H. and Gordon L. I. (1987) Seasonal distributions and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon. Geochim. Cosmochim. Acta 51, 697–706.Google Scholar
  8. Chappelaz J., Blunier T., Raynaud D., Barnola J. M., Schwander J., and Stauffer B. (1993) Synchronous changes in atmospheric CH4 and Greenland Climate between 40 and 8 kyr bp. Nature 366, 443–445.Google Scholar
  9. Cicerone R. J. and Oremland R. S. (1988) Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycl. 2, 299–327.Google Scholar
  10. Conrad R. and Seiler W. (1988) Methane and hydrogen in seawater (Atlantic Ocean). Deep-Sea Res. 35, 1903–1917.Google Scholar
  11. Dando P. R., Austen M. C., Burke R. A. Jr, Kendall M. A., Kennicutt II M. C., Judd A. G., Moore D. C., O'Hara S. C. M., Schmaljohann R., and Southward A. J. (1991) Ecology of a North Sea pockmark with an active methane seep. Mar. Ecol. Prog. Ser. 70, 49–63.Google Scholar
  12. Dando P. R., Jensen P., O'Hara S. C. M., Niven S. J., Schmaljohann R., Schuster U., and Taylor L. J. (1994a) The effects of methane seepage at an intertidal/shallow subtidal site on the shore of the Kattegat, Vendsyssel, Denmark. Bull. Geol. Soc. Den. Google Scholar
  13. Dando P. R., O'Hara S. C.M., Schuster U., Taylor L. J., Clayton C. J., Baylis S., and Laier T. (1994b) Gas-seepage from a carbonate-cemented sandstone reef on the Kattegat coast of Denmark. Mar. Petrol. Geol. 11, 182–189.Google Scholar
  14. de Angelis M. A. and Lilley M. D. (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol. Oceanogr. 32, 716–722.Google Scholar
  15. de Angelis M. A., Lilley, M. D., Olson, E. J., and Baross, J. A. (1993) Methane oxidation in deep-sea hydrothermal plumes of the Endeavour Segment of the Juan de Fuca Ridge. Deep-Sea Res I. 40, 1169–1186.Google Scholar
  16. de Wilde H. P. J. and Duyzer J. (1995) Methane emissions off the Dutch coast: Air-sea concentration differences versus atmospheric gradients. In B. Jähne and E. C. Monahan (eds.), Air-Water Gas Transfer, pp. 763–773. AEON-Verlag, Hamburg.Google Scholar
  17. Faber E. and Stahl W. (1984) Geochemical surface exploration for hydrocarbons in the North Sea. Bull. Am. Ass. Petr. Geol. 68, 363–386.Google Scholar
  18. Fox M. A. (1995) Memorandum 22/4b-4 Well Site Hazards. MOBIL North Sea Ltd.Google Scholar
  19. Hainbucher D., Pohlmann T. and Backhaus J. (1987) Transport of conservative tracers in the North Sea: First results of a circulation and transport model. Cont. Shelf Res. 7, 1161–1179.Google Scholar
  20. Hempel P., Spieß V. and Schreiber R. (1994) Expulsion of shallow gas in the Skagerrak-evidence from sub-bottom profiling, seismic, hydroacoustical and geochemical data. Estuarine, Coastal Shelf Res. 38, 583–601.Google Scholar
  21. Hovland M. (1992) Pockmarks and gas-charged sediments in the eastern Skagerrak. Cont. Shelf Res. 12, 1111–1119.Google Scholar
  22. Hovland M., Judd A. G., and Burke R. A. J. (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26, 559–578.Google Scholar
  23. Hovland M. and Judd A. J. (1988) Seabed Pockmarks and Seepages. Graham and Trotman Limited, London.Google Scholar
  24. Hovland M., Talbot M. R. Qvale H., Olausen S., and Aasberg L. (1987) Methane-related carbonate cements in pockmarks of the North Sea. J. Sed. Petr. 57, 881–892.Google Scholar
  25. Hovland M. and Thomsen E. (1989) Hydrocarbon-based communities in the North Sea? Sarsia 74, 29–42.Google Scholar
  26. ICES (1983) lushing times of the North Sea. ICES Cooperative Research Report 123.Google Scholar
  27. Jensen P., Aagaard I., Burke Jr. R. A., Dando P. R., Jørgensen N. O., Kuipers A., Laier T., O'Hara S. C. M., and Schmaljohann R. (1992) ‘Bubbling Reefs’ in the Kattegat: submarine landscapes of carbonate-cemented rocks support a diverse ecosystem at methane seeps. Mar. Ecol. Prog. Ser. 83, 103–112.Google Scholar
  28. Jørgensen N. O. (1992) Methane-derived carbonate cementation of holocene marine sediments from Kattegat, Denmark. Cont. Shelf Res. 12, 1209–1218.Google Scholar
  29. Judd A. G. and Hovland M. (1992) The evidence of shallow gas in marine sediments. Cont. Shelf. Res. 12, 1081–1095.Google Scholar
  30. Kautsky H. (1973) The distribution of the radio nuclide Caesium 137 as an indicator for North Sea watermass transport. Dt. hydrogr. Z. 26, 241–246.Google Scholar
  31. Kautsky H. (1985) Distribution and content of different artificial radio nuclides in the water of the North Sea during the years 1977 to 1981 (complemented with some results from 1982 to 1984). Dt. hydrogr. Z. 38, 193–224.Google Scholar
  32. Körtzinger A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L., and Duinker, J. C. (1996) At sea - intercomparison of two newly designed underway pCO2-systems-encouraging results. Mar. Chem. 52, 133–145.Google Scholar
  33. Laier T., Jørgensen N. O., Buchardt B., Cederberg T., and Kuipers A. (1992) Accumulation and seepages of biogenic gas in northern Denmark. Cont. Shelf Res. 12, 1173–1186.Google Scholar
  34. Lammers S. and Suess E. (1994) An improved head-space analysis method for methane in seawater. Mar. Chem. 47, 115–125.Google Scholar
  35. Lamontagne R. A., Swinnerton J. W., Linnenbom V. J., and Smith W. D. (1973) Methane concentrations in various marine environments. J. Geophys. Res. 78, 5317–5324.Google Scholar
  36. Lashof D. A. and Ahuja D. R. (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529–531.Google Scholar
  37. Lelieveld J., Crutzen P. J., and Brühl C. (1993) Climate effects of atmospheric methane. Chemosphere 26, 739–768.Google Scholar
  38. Lenhart H.-J., Radach G., Backhaus J., and Pohlmann T. (1995) Simulations of the North Sea circulation, its variability and its implementation as hydrodynamic forcing in ERSEM. Neth. J. of North Sea Res. 33, 271–299.Google Scholar
  39. Liss P. S. and Merlivat L. (1986) Air-sea gas exchange rates: Introduction and synthesis. In P. Buat-Ménard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, pp. 113–127. D. Reidel Publishing Company, Dordrecht.Google Scholar
  40. Luthardt H. (1987) Analyse der wassernahen Druck-und Windfelder über der Nordsee aus Routinebeobachtungen. Hamburger Geophysikalische Einzelschriften A 83, 1–115.Google Scholar
  41. Moll A. (1998) Regional distribution of primary production in the North Sea simulated by a three-dimensional model. J. Mar. Sys., in pressGoogle Scholar
  42. OPL (1995) North Sea and N62° Atlas. Oilfield Publications Limited, Herefordshire.Google Scholar
  43. Otto L., Zimmermann J. T. F., Furnes G. K., Mork M., Saertre R., and Becker G. (1990) Review of the physical oceanography of the North Sea. Neth. J. of Sea Res. 26, 161–238.Google Scholar
  44. Pingree R. D. (1978) Tidal fronts on the shelf seas around the British Isles. J. Geophys. Res. 83, 4615–4622.Google Scholar
  45. Pohlmann T. (1996) Predicting the thermocline in a circulation model of the North Sea-Part I: model description, calibration and verification. Cont. Shelf Res. 16, 131–146.Google Scholar
  46. Pohlmann T. and Puls W. (1994) Currents and transport in water. In J. Sündermann (ed.), Circulation and Contaminant Fluxes in the North Sea, pp. 345–402. Springer Verlag, Berlin.Google Scholar
  47. Rehder G. (1996) Quellen und Senken marinen Methans zwischen Schelf und offenem Ozean, Thesis, Christian-Albrechts-Universität, Kiel.Google Scholar
  48. Schirmer F., Essen H. H., Gurgel K. W., Schlick T., and Hessner K. (1994) Local variability of surface measurements based on HF-radar measurements. In J. Sündermann (ed.), Circulation and Contaminant Fluxes in the North Sea, pp. 271–289. Springer Verlag, Berlin.Google Scholar
  49. Schmaljohann R., Faber E., Whiticar M. J., and Dando P. R. (1990) Co-existence of methane-and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Mar. Ecol. Prog. Ser. 61, 119–124.Google Scholar
  50. Scranton M. I. and Brewer P. G. (1978) Consumption of dissolved methane in the deep ocean. Limnol. Oceanogr. 23, 1207–1213.Google Scholar
  51. Scranton M. I. and McShane K. (1991) Methane fluxes in the southern North Sea: the role of European rivers. Cont. Shelf. Res. 11, 37–52.Google Scholar
  52. Suess E., Kremling K., and Mienert J. (1994) Nordatlantik 1993, Cruise No. 26, 24 August-26. November 1993. METEOR-Berichte, Universität Hamburg, Hamburg.Google Scholar
  53. Sündermann J. (1994) Circulation and Contaminant Fluxes in the North Sea. Springer Verlag, Berlin.Google Scholar
  54. Sweeney R.E. (1988) Petroleum-related hydrocarbon seepage in a recent North Sea sediment. Chem. Geol. 71, 53–64.Google Scholar
  55. Wanninkhof R. (1992) Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382.Google Scholar
  56. Ward B. B., Kilpatrick K. A., Novelli P. C., and Scranton M. I. (1987) Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters. Nature 327, 226–229.Google Scholar
  57. Webster, A. and Drew, S. (1995) MOBIL North Sea Limited - 1995 Wellsite 22/4B-4 Inspection Report., MOBIL North Sea Ltd.Google Scholar
  58. Welhan J. A. and Craig H. (1983) Methane, hydrogen and helium in hydrothermal fluids at 21°N on the East Pacific Rise. In P. A. Rona et al. (eds.), Hydrothermal Processes at Seafloor Spreading Centers, pp. 391–409. Plenum Press, New York.Google Scholar
  59. Wernecke G., Flöser G., Korn S., Weitkamp C., and Michaelis W. (1994) First measurements of the methane concentration in the North Sea with a new in-situ device. Bull. Geol. Soc. Denmark 41, 5–11.Google Scholar
  60. Wessel P. (1995) New version of the generic mapping tools (GMT) released. Eos Trans. AGU 76, 329.Google Scholar
  61. Wessel P. and Smith H. F. (1991) Free software helps map and display data. Eos Trans. AGU 72.Google Scholar
  62. Wiesenburg D. A. and Guinasso N. L. J. (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and seawater. J. Chem. Engin. Data 24, 356–360.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Gregor Rehder
  • Robin S. Keir
  • Erwin Suess
  • Thomas Pohlmann

There are no affiliations available

Personalised recommendations