Skip to main content
Log in

The Multiple Sources and Patterns of Methane inNorth Sea Waters

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The methane concentration in the atmosphere andsurface water was surveyed along 58° N acrossthe North Sea. In addition, the vertical methanedistribution in the water column was determined at sixstations along the transect. The methane contents ofthe surface water as well as in the water column wereextremely inhomogeneous. Input by freshwater fromriver discharge and injection of methane from thesediment were both observed. The survey continued fromthe western side of the North Sea to the Elbe Riverestuary. The Elbe River appears to have low methaneconcentrations compared to other European rivers, itsaverage input into the North Sea is estimated to be70 nmol s-1 of methane. Near 58° N,1°40' E, an abandoned drill site releases about 25 % ofthe North Sea's emission of methane to the atmosphere.The advective methane transport induced by watercirculation was assessed for May 16, 1994, using a 3-DNorth Sea circulation model. For the period of thissurvey, the North Sea's source strength foratmospheric methane is estimated using in situwind velocities. In comparison to the advectivetransport by the water circulation, the gas flux tothe atmosphere appears to be the dominant sink ofNorth Sea methane. This flux is estimated to bebetween 1500 · 106 mol a-1 and 3100 ·106mol a-1, depending on the relationbetween wind speed and gas transfer velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backhaus J. O. (1985) A three-dimensional model for the simulation of shelf sea dynamics. Dt. hydrogr. Z. 38, 165–187.

    Google Scholar 

  • Bange H. W., Bartell U. H., Rapsomanikis S., and Andreae M. O. (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Glob. Biochem. Cycl. 8, 465–480.

    Google Scholar 

  • Bates T. S., Kimberly K. C., Johnson J. E., and Gammon R. H. (1996) A reevaluation of the open ocean source of methane to the atmosphere. J. Geophys. Res. 101, 6953–6961.

    Google Scholar 

  • Blunier T., Chappellaz J. A., Schwander J., Barnola J.-M., Desperts T., Stauffer B., and Raynaud D. (1993) Atmospheric methane, record from a Greenland ice Core over the last 1000 years. Geophys. Res. Lett. 20, 2219–2222.

    Google Scholar 

  • BSH (1994) North Sea Handbook: Eastern Part. Bundesamt für Seeschiffahrt und Hydrographie, Hamburg.

    Google Scholar 

  • Bussmann I. (1994) Verteilung und Steuergrößen der Aktivität methan-oxidierender Bakterien in Randmeeren des Nordatlantiks. Berichte aus dem Sonderforschungsbereich 313, Christian-Albrechts Universität, Kiel.

    Google Scholar 

  • Butler J. H., Jones R. D., Garber J. H. and Gordon L. I. (1987) Seasonal distributions and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon. Geochim. Cosmochim. Acta 51, 697–706.

    Google Scholar 

  • Chappelaz J., Blunier T., Raynaud D., Barnola J. M., Schwander J., and Stauffer B. (1993) Synchronous changes in atmospheric CH4 and Greenland Climate between 40 and 8 kyr bp. Nature 366, 443–445.

    Google Scholar 

  • Cicerone R. J. and Oremland R. S. (1988) Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycl. 2, 299–327.

    Google Scholar 

  • Conrad R. and Seiler W. (1988) Methane and hydrogen in seawater (Atlantic Ocean). Deep-Sea Res. 35, 1903–1917.

    Google Scholar 

  • Dando P. R., Austen M. C., Burke R. A. Jr, Kendall M. A., Kennicutt II M. C., Judd A. G., Moore D. C., O'Hara S. C. M., Schmaljohann R., and Southward A. J. (1991) Ecology of a North Sea pockmark with an active methane seep. Mar. Ecol. Prog. Ser. 70, 49–63.

    Google Scholar 

  • Dando P. R., Jensen P., O'Hara S. C. M., Niven S. J., Schmaljohann R., Schuster U., and Taylor L. J. (1994a) The effects of methane seepage at an intertidal/shallow subtidal site on the shore of the Kattegat, Vendsyssel, Denmark. Bull. Geol. Soc. Den.

  • Dando P. R., O'Hara S. C.M., Schuster U., Taylor L. J., Clayton C. J., Baylis S., and Laier T. (1994b) Gas-seepage from a carbonate-cemented sandstone reef on the Kattegat coast of Denmark. Mar. Petrol. Geol. 11, 182–189.

    Google Scholar 

  • de Angelis M. A. and Lilley M. D. (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol. Oceanogr. 32, 716–722.

    Google Scholar 

  • de Angelis M. A., Lilley, M. D., Olson, E. J., and Baross, J. A. (1993) Methane oxidation in deep-sea hydrothermal plumes of the Endeavour Segment of the Juan de Fuca Ridge. Deep-Sea Res I. 40, 1169–1186.

    Google Scholar 

  • de Wilde H. P. J. and Duyzer J. (1995) Methane emissions off the Dutch coast: Air-sea concentration differences versus atmospheric gradients. In B. Jähne and E. C. Monahan (eds.), Air-Water Gas Transfer, pp. 763–773. AEON-Verlag, Hamburg.

    Google Scholar 

  • Faber E. and Stahl W. (1984) Geochemical surface exploration for hydrocarbons in the North Sea. Bull. Am. Ass. Petr. Geol. 68, 363–386.

    Google Scholar 

  • Fox M. A. (1995) Memorandum 22/4b-4 Well Site Hazards. MOBIL North Sea Ltd.

  • Hainbucher D., Pohlmann T. and Backhaus J. (1987) Transport of conservative tracers in the North Sea: First results of a circulation and transport model. Cont. Shelf Res. 7, 1161–1179.

    Google Scholar 

  • Hempel P., Spieß V. and Schreiber R. (1994) Expulsion of shallow gas in the Skagerrak-evidence from sub-bottom profiling, seismic, hydroacoustical and geochemical data. Estuarine, Coastal Shelf Res. 38, 583–601.

    Google Scholar 

  • Hovland M. (1992) Pockmarks and gas-charged sediments in the eastern Skagerrak. Cont. Shelf Res. 12, 1111–1119.

    Google Scholar 

  • Hovland M., Judd A. G., and Burke R. A. J. (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26, 559–578.

    Google Scholar 

  • Hovland M. and Judd A. J. (1988) Seabed Pockmarks and Seepages. Graham and Trotman Limited, London.

    Google Scholar 

  • Hovland M., Talbot M. R. Qvale H., Olausen S., and Aasberg L. (1987) Methane-related carbonate cements in pockmarks of the North Sea. J. Sed. Petr. 57, 881–892.

    Google Scholar 

  • Hovland M. and Thomsen E. (1989) Hydrocarbon-based communities in the North Sea? Sarsia 74, 29–42.

    Google Scholar 

  • ICES (1983) lushing times of the North Sea. ICES Cooperative Research Report 123.

  • Jensen P., Aagaard I., Burke Jr. R. A., Dando P. R., Jørgensen N. O., Kuipers A., Laier T., O'Hara S. C. M., and Schmaljohann R. (1992) ‘Bubbling Reefs’ in the Kattegat: submarine landscapes of carbonate-cemented rocks support a diverse ecosystem at methane seeps. Mar. Ecol. Prog. Ser. 83, 103–112.

    Google Scholar 

  • Jørgensen N. O. (1992) Methane-derived carbonate cementation of holocene marine sediments from Kattegat, Denmark. Cont. Shelf Res. 12, 1209–1218.

    Google Scholar 

  • Judd A. G. and Hovland M. (1992) The evidence of shallow gas in marine sediments. Cont. Shelf. Res. 12, 1081–1095.

    Google Scholar 

  • Kautsky H. (1973) The distribution of the radio nuclide Caesium 137 as an indicator for North Sea watermass transport. Dt. hydrogr. Z. 26, 241–246.

    Google Scholar 

  • Kautsky H. (1985) Distribution and content of different artificial radio nuclides in the water of the North Sea during the years 1977 to 1981 (complemented with some results from 1982 to 1984). Dt. hydrogr. Z. 38, 193–224.

    Google Scholar 

  • Körtzinger A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L., and Duinker, J. C. (1996) At sea - intercomparison of two newly designed underway pCO2-systems-encouraging results. Mar. Chem. 52, 133–145.

    Google Scholar 

  • Laier T., Jørgensen N. O., Buchardt B., Cederberg T., and Kuipers A. (1992) Accumulation and seepages of biogenic gas in northern Denmark. Cont. Shelf Res. 12, 1173–1186.

    Google Scholar 

  • Lammers S. and Suess E. (1994) An improved head-space analysis method for methane in seawater. Mar. Chem. 47, 115–125.

    Google Scholar 

  • Lamontagne R. A., Swinnerton J. W., Linnenbom V. J., and Smith W. D. (1973) Methane concentrations in various marine environments. J. Geophys. Res. 78, 5317–5324.

    Google Scholar 

  • Lashof D. A. and Ahuja D. R. (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529–531.

    Google Scholar 

  • Lelieveld J., Crutzen P. J., and Brühl C. (1993) Climate effects of atmospheric methane. Chemosphere 26, 739–768.

    Google Scholar 

  • Lenhart H.-J., Radach G., Backhaus J., and Pohlmann T. (1995) Simulations of the North Sea circulation, its variability and its implementation as hydrodynamic forcing in ERSEM. Neth. J. of North Sea Res. 33, 271–299.

    Google Scholar 

  • Liss P. S. and Merlivat L. (1986) Air-sea gas exchange rates: Introduction and synthesis. In P. Buat-Ménard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, pp. 113–127. D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  • Luthardt H. (1987) Analyse der wassernahen Druck-und Windfelder über der Nordsee aus Routinebeobachtungen. Hamburger Geophysikalische Einzelschriften A 83, 1–115.

    Google Scholar 

  • Moll A. (1998) Regional distribution of primary production in the North Sea simulated by a three-dimensional model. J. Mar. Sys., in press

  • OPL (1995) North Sea and N62° Atlas. Oilfield Publications Limited, Herefordshire.

    Google Scholar 

  • Otto L., Zimmermann J. T. F., Furnes G. K., Mork M., Saertre R., and Becker G. (1990) Review of the physical oceanography of the North Sea. Neth. J. of Sea Res. 26, 161–238.

    Google Scholar 

  • Pingree R. D. (1978) Tidal fronts on the shelf seas around the British Isles. J. Geophys. Res. 83, 4615–4622.

    Google Scholar 

  • Pohlmann T. (1996) Predicting the thermocline in a circulation model of the North Sea-Part I: model description, calibration and verification. Cont. Shelf Res. 16, 131–146.

    Google Scholar 

  • Pohlmann T. and Puls W. (1994) Currents and transport in water. In J. Sündermann (ed.), Circulation and Contaminant Fluxes in the North Sea, pp. 345–402. Springer Verlag, Berlin.

    Google Scholar 

  • Rehder G. (1996) Quellen und Senken marinen Methans zwischen Schelf und offenem Ozean, Thesis, Christian-Albrechts-Universität, Kiel.

    Google Scholar 

  • Schirmer F., Essen H. H., Gurgel K. W., Schlick T., and Hessner K. (1994) Local variability of surface measurements based on HF-radar measurements. In J. Sündermann (ed.), Circulation and Contaminant Fluxes in the North Sea, pp. 271–289. Springer Verlag, Berlin.

    Google Scholar 

  • Schmaljohann R., Faber E., Whiticar M. J., and Dando P. R. (1990) Co-existence of methane-and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Mar. Ecol. Prog. Ser. 61, 119–124.

    Google Scholar 

  • Scranton M. I. and Brewer P. G. (1978) Consumption of dissolved methane in the deep ocean. Limnol. Oceanogr. 23, 1207–1213.

    Google Scholar 

  • Scranton M. I. and McShane K. (1991) Methane fluxes in the southern North Sea: the role of European rivers. Cont. Shelf. Res. 11, 37–52.

    Google Scholar 

  • Suess E., Kremling K., and Mienert J. (1994) Nordatlantik 1993, Cruise No. 26, 24 August-26. November 1993. METEOR-Berichte, Universität Hamburg, Hamburg.

    Google Scholar 

  • Sündermann J. (1994) Circulation and Contaminant Fluxes in the North Sea. Springer Verlag, Berlin.

    Google Scholar 

  • Sweeney R.E. (1988) Petroleum-related hydrocarbon seepage in a recent North Sea sediment. Chem. Geol. 71, 53–64.

    Google Scholar 

  • Wanninkhof R. (1992) Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382.

    Google Scholar 

  • Ward B. B., Kilpatrick K. A., Novelli P. C., and Scranton M. I. (1987) Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters. Nature 327, 226–229.

    Google Scholar 

  • Webster, A. and Drew, S. (1995) MOBIL North Sea Limited - 1995 Wellsite 22/4B-4 Inspection Report., MOBIL North Sea Ltd.

  • Welhan J. A. and Craig H. (1983) Methane, hydrogen and helium in hydrothermal fluids at 21°N on the East Pacific Rise. In P. A. Rona et al. (eds.), Hydrothermal Processes at Seafloor Spreading Centers, pp. 391–409. Plenum Press, New York.

    Google Scholar 

  • Wernecke G., Flöser G., Korn S., Weitkamp C., and Michaelis W. (1994) First measurements of the methane concentration in the North Sea with a new in-situ device. Bull. Geol. Soc. Denmark 41, 5–11.

    Google Scholar 

  • Wessel P. (1995) New version of the generic mapping tools (GMT) released. Eos Trans. AGU 76, 329.

    Google Scholar 

  • Wessel P. and Smith H. F. (1991) Free software helps map and display data. Eos Trans. AGU 72.

  • Wiesenburg D. A. and Guinasso N. L. J. (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and seawater. J. Chem. Engin. Data 24, 356–360.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehder, G., Keir, R.S., Suess, E. et al. The Multiple Sources and Patterns of Methane inNorth Sea Waters. Aquatic Geochemistry 4, 403–427 (1998). https://doi.org/10.1023/A:1009644600833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009644600833

Navigation