Skip to main content
Log in

Molecular Dispersion of Metal Complexes within Zeolitic Solids: An Alternative Way to Prepare Supported MOx Catalysts

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Molecular Designed Dispersion (MDD) of metal complexes on a highly porous support is a novel synthesis method to prepare high quality heterogeneous catalysts. The process basically consists of two steps: (1) the anchoring of the complex onto the support in a controlled way and (2) the mild oxidation of the grafted complex towards catalytically active metal-oxide surface structures.

This article presents two typical case studies: (1) the incorporation of cationic Cu-complexes in a H-ZSM-5 zeolite from the liquid phase and (2) the gas phase modification of pure silica MCM-48, using the VO(acac)2 complex. In both cases, superior catalysts are obtained. Detailed chemical, physical and catalytical analyses of these catalysts are discussed in the text. Comparison is made with analogous catalysts, prepared by conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. White, Catal. Today 18(1), 73-109 (1993).

    Google Scholar 

  2. P. Van Der Voort, M.B. Mitchell, E.F. Vansant, and M.G. White, Interface Science 5, 179 (1997).

    Google Scholar 

  3. P. Van Der Voort, M. Baltes, E.F. Vansant, and M.G. White, Interface Science 5, 209 (1997).

    Google Scholar 

  4. A. Zippert and M.G. White, in Meetings of the ACS (ACS Preprints-Division of Petroleum Chemistry, Chicago, IL, 1993), pp. 872-875.

    Google Scholar 

  5. J.A. Bertrand, D.A. Bruce, and M.G. White, AIChE Journal 39 (12), 1966 (1993).

    Google Scholar 

  6. H.N. Choksi, J.A. Bertrand, and M.G. White, J. Catalysis 164, 484-489 (1996).

    Google Scholar 

  7. L.D. Rollmann and E.W. Valyocsik, “Zeolite moleculear sieves,” Inorganic Synthesis (John Wiley and Sons, 1981), vol. 22, p. 67.

    Google Scholar 

  8. T. Masuda, A. Sato, H. Hara, M. Kouno, and K. Hasimoto, Appl. Catal. A: Gen. 111, 143 (1994).

    Google Scholar 

  9. D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (John Wiley and Sons, New York, 1974); A. Dyer, An Introduction to Zeolite Molecular Sieves (John Wiley and Sons, New York, 1988); R. Szostak, Molecular Sieves: Principles of Synthesis and Identification (Van Nostrand Reinhold, New York, 1989).

    Google Scholar 

  10. N. Herron, Inorg. Chem. 25, 4741 (1986).

    Google Scholar 

  11. C. Bowers and P.K. Dutta, J. Catal. 122, 271 (1990).

    Google Scholar 

  12. D.A. Bruce, J.A. Bertrand, P.S.E. Dai, M.L. Occelli, R. Petty, and M.G. White, in Catalysis of Organic Reactions, edited by M. Scaros (Marcell Dekker, New York, 1994), pp. 545-552.

    Google Scholar 

  13. D.A. Bruce, A.P. Wilkinson, M.G. White, and J.A. Bertrand, J. Chem. Comm., Royal Society of Chemistry Journal, 2059-2060 (1995).

  14. D.A. Bruce, A.P. Wilkinson, M.G. White, and J.A. Bertrand, J. of Solid State Chemistry 125, 228-233 (1996).

    Google Scholar 

  15. J.A. Bertrand, D.A. Bruce, A.P. Wilkinson, P.S.E. Dai, R.H. Petty, and M.G. White, in Catalysis of Organic Reactions, edited by Russel E. Malz, Jr. (Marcel Dekker, 1996), p. 435.

  16. T. Kokfe, J. Gricus, R.J. Gorte, and W.E. Farneth, J. Catal. 114, 34-45 (1988).

    Google Scholar 

  17. M. Iwamoto, H. Yahiron, K. Tanda, N. Mizuno, Y. Mine, and S. Kagawa, J. Phys. Chem. 95(9), 3727 (1991).

    Google Scholar 

  18. W. Geilmann and A. Voight, Z. Anorg. Chem. 193, 311 (1930).

    Google Scholar 

  19. A.W. Aylor, S.C. Larsen, J.A. Reimer, and A.T. Bell, J. Catal. 157, 592 (1995).

    Google Scholar 

  20. C. Marquez-Alvarez, G.S. McDougall, A. Guerrero-Ruiz, and I. Rodrigues-Ramos, Appl. Surf. Sci 78, 477 (1994).

    Google Scholar 

  21. A. Miyamoto, H. Himei, Y. Oka, E. Maruya, M. Katagiri, R. Vetrivel, and M. Kubo, Catal. Today 22, 87 (1994).

    Google Scholar 

  22. S.N.R. Rao, Ph.D. thesis, Georgia Institute of Technology (1996).

  23. Y. Li and W.K. Hall, J. Catal. 129, 202 (1991).

    Google Scholar 

  24. C.T. Kresge, M.E. Leonwicz, W.J. Roth, J. Vartuli, and J.S. Beck, Nature 359, 710 (1992).

    Google Scholar 

  25. C.T. Kresge, M.E. Leonwicz, W.J. Roth, J. Vartuli, and J.S. Beck, U.S. Patent 5,098,684.

  26. C.F. Cheng, D.H. Park, and J. Klinowski, J. Chem. Soc. Faraday Trans. 93, 193 (1997).

    Google Scholar 

  27. A. Moonier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krisnaumurty, P. Petroff, A. Firouzi, M. Janicke, and B.F. Chmelka, Science 261, 1299 (1993).

    Google Scholar 

  28. K.J. Edler, P.A. Reynolds, J.W. White, and D. Cookson, J. Chem. Soc. Faraday Trans. 93, 199 (1997).

    Google Scholar 

  29. C.F. Cheng, W. Zhou, D.H. Park, J. Klinowski, M. Hargreaves, and L.F. Gladder, J. Chem. Soc. Faraday Trans. 93, 359 (1997).

    Google Scholar 

  30. J. Rathousky, A. Zukal, O. Franke, and G. Schulz-Elkoff, J. Chem. Soc. Faraday Trans. 90, 2821 (1994).

    Google Scholar 

  31. C.Y. Chen, S.L. Burkett, H.X. Li, and M.E. Davis, Microporous Materials 2, 27 (1993).

    Google Scholar 

  32. Q. Huo, R. Leon, P.M. Petroff, and G.D. Stucky, Science 268, 1324 (1995).

    Google Scholar 

  33. M. Morey, A. Davidson, H. Eckert, and G.D. Stucky, Chem. Mat. 8, 486 (1996).

    Google Scholar 

  34. P. Van Der Voort, K. Possemiers, and E.F. Vansant, J. Chem. Soc Faraday Trans. 92, 843 (1996).

    Google Scholar 

  35. P. Van Der Voort, I.V. Babitch, P.J. Grobet, A.A. Verberckmoes, and E.F. Vansant, J. Chem. Soc. Faraday Trans. 92, 3635 (1996).

    Google Scholar 

  36. P. Van Der Voort, M.G. White, M.B. Mitchell, A.A. Verberckmoes, and E.F. Vansant, Spectrochimica Acta A 53, 2181-2187 (1997).

    Google Scholar 

  37. E.P. Barret, L.G. Joyner, and P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

    Google Scholar 

  38. J.C. Vartuli, K.D. Schmitt, C.T. Kresge, W.J. Rath, M.E. Leonowicz, S.B. McCullen, S.D. Helrring, J.S. Beck, J.L. Schlenker, D.H. Olson, and E.W. Sheppart, in Zeolites and Related Microporous Materials, edited by J. Weitkamp, H.G. Karge, H. Pfeifer, and W. Holderich, Studies in Science and Catalysis, 84 (Elsevier Science, 1994).

  39. E.F. Vansant, P. Van Der Voort, and K.C. Vrancken, Characterization and Chemical Modification of the Silica Surface, Studies in Surface Science and Catalysis, 93 (Elsevier Science, 1995).

  40. P. Van Der Voort, M. Morey, G.D. Stucky, M. Mathieu, and E.F. Vansant, J. Phys. Chem. B. 102, 585-590 (1998).

    Google Scholar 

  41. E. Alami, G. Beinert, P. Marie, and R. Zana, Langmuir 9, 1465 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Voort, P., Mathieu, M., Vansant, E. et al. Molecular Dispersion of Metal Complexes within Zeolitic Solids: An Alternative Way to Prepare Supported MOx Catalysts. Journal of Porous Materials 5, 305–316 (1998). https://doi.org/10.1023/A:1009642507133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009642507133

Navigation