Skip to main content
Log in

Synthesis and diversity analysis of lead discovery piperazine-2-carboxamide libraries

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A Lead Discovery Library ofpiperazine-2-carboxamide derivatives was produced forgeneral screening. This paper discloses two novelsolid phase synthetic routes used to produce 15 000single compounds via the Irori directed sortingtechnique. Computational methods such as reagentclustering and library profiling were used to maximizereagent diversity and optimize pharmacokineticparameters. The results of a four center pharmacophoreanalysis revealed the added diversity gained by usingtwo independent synthetic routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. a. Patel, D.V., Application of combinatorial technology to drug discovery, In Moos, W.H., Pavia, M.R., Ellington, A.D. and Kay, B.K. (Eds.), Annual Reports in Combinatorial Chemistry and Molecular Diversity, Vol. 1, ESCOM, Leiden, 1997, pp. 78–79. b. Sarshar, S. and Mjalli, A.M.M., Techniques for single-compound synthesis, In Moos, W.H., Pavia, M.R., Ellington, A.D. and Kay, B.K. (Eds.), Annual Reports in Combinatorial Chemistry and Molecular Diversity, Vol. 1, ESCOM, Leiden 1997, pp. 19–29. c. Balkenhohl, F., Bussche-Hunnefeld, C., Lansky, A. and Zechel, C., Combinatorial synthesis of small organic molecules, Angew. Chem., Int. Ed. Engl., 35 (1996) 2288–2337. d. Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gallop, M.A., Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions, J. Med. Chem., 37 (1994) 1385–401.

    Google Scholar 

  2. a. Lam, K.S., Lebl, M. and Krchnak, V., The ‘one-bead-one-compound’ combinatorial library method, Chem. Rev., 97 (1997) 411–448. b. Czarnik, A.W., Encoding methods for combinatorial chemistry, Curr. Opin. Chem. Biol., 1 (1997) 60–66. c. Baldwin, J.J., Design, synthesis and use of binary encoded synthetic chemical libraries, Mol. Diversity, 2 (1996) 81–88. d. Ni, Z.-J., Maclean, D., Holmes, C.P. and Gallop, M.A., Encoded combinatorial chemistry: binary coding using chemically robust secondary amine tags, Methods Enzymol., 267 (1996) 261–272.

    Google Scholar 

  3. a. Sigal, N.H. and Chelsky, D., Approaches and technologies for screening large combinatorial libraries, In Gordon, E.M. and Kerwin, J.F. (Eds.), Combinatorial Chemistry and Molecular Diversity in Drug Discovery, Wiley-Liss, New York, NY, 1998, pp. 433–443. b. Beutel, B.A., Strategies for screening combinatorial libraries, In Gordon, E.M. and Kerwin, J.F. (Eds.), Combinatorial Chemistry and Molecular Diversity in Drug Discovery, Wiley-Liss, New York, NY, 1998, pp. 421–432.

    Google Scholar 

  4. a. Nicolaou, K.C., Xiao, X.-Y., Parandoosh, Z., Senyei, A. and Nova, M.P., Radiofrequency encoded combinatorial chemistry, Angew. Chem., Int. Ed. Engl., 34 (1995) 2289–2291. b. Xiao, X.-Y. and Nova, M.P., Radiofrequency encoding and additional techniques for the structure elucidation of synthetic combinatorial libraries, In Wilson, S.R. and Czarnik, A.W. (Eds.), Combinatorial Chemistry Synthesis and Application, John Wiley & Sons, New York, NY, 1997, pp. 135–152.

    Google Scholar 

  5. a. Vacca, J.P., Dorsey, B.D., Schleif, W.A., Levin, R.B., McDaniel, S.L., Darke, P.L., Zugay, J., Quintero, J.C. and Blahy, O.M., L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor,Proc. Natl. Acad. Sci. USA, 91 (1994) 4096–4100. b. Mishani, Eyal, Dence, C.S., McCarthy, T.J. and Welch, M.J., Formation of phenylpiperazines by a novel alumina supported bis-alkylation, Tetrahedron Lett., 37 (1996) 319–322. c. Cliffe, I.A., Brightwell, C.I., Fletcher, A., Forster, E.A., Mansell, H.L., Reilly, Y., Routledge, C. and White, A.C., (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenylpropanamide [(S)-WAY-100135]: a selective antagonist at presynaptic and postsynaptic 5-HT1A receptors, J. Med. Chem., 36 (1993) 1509–1510. d. Kim, B.M., Evans, B.E., Gilbert, K.F., Hanifin, C.M., Vacca, J.P., Michelson, S.R., Darke, P.L., Zugay, J.A., Emini, E.A., Schleif, W., Lin, J.H., Chen, I.-W., Vastag, K., Anderson, P.S. and Huff, J.R., Cycloalkylpiperazines as HIV-1 protease inhibitors: enhanced oral absorption, Bioorg. Med. Chem. Lett., 5 (1995) 2707–2712.

    Google Scholar 

  6. a. Wu, M.T., Ikeler, T.J., Ashton, W.T., Chang, R.S.L., Lotti, V.J. and Greenlee, W.J., Synthesis and structure-activity relationships of a novel series of non-peptide AT2-selective angiotensin II receptor antagonists, Bioorg.Med. Chem. Lett., 3 (1993) 2023. b. Ashton, W.T., Greenlee, W.J., Wu, M.T., Dorn, C.P., Mac-Coss, M. and Mills, S.G., N,N-diacylpiperazines, PCT Int. Appl WO 9220661.

    Google Scholar 

  7. Mills, Sa.G., Budhu, R.J., Dorn, C.P., Greenlee, W.J., Maccoss, M. and Wu, M.T., Preparation of N,N-diacylpiperazinecarboxylates as tachykinin antagonists, PCT Int. Appl. WO 9413646.

  8. a. Rossen, K., Weissman, S.A., Sager, J., Reamer, R.A., Askin, D., Volante, R.P. and Reider, P.J., Asymmetric hydrogenation of tetrahydropyrazines: synthesis of (S)-piperazine-2-tert-butylcarboxamide, an intermediate in the preparation of the HIV protease inhibitor indinavir, Tetrahedron Lett., 36 (1995) 6419–6422. b. Stein, D.S., Fish, D.G., Bilello, J.A., Preston, S.L., Martineau, G.L. and Drusano, G.L., A 24-week open-label phase I/II evaluation of the HIV protease inhibitor MK-639 (indinavir), AIDS, 10 (1996) 485–492.

    Google Scholar 

  9. Breitenbucher, J.G., Johnson, C.R., Haight, M. and Phelan, J.C., Generation of a piperazine-2-carboxamide library: a practical application of the phenol-sulfide react and release linker, Tetrahedron Lett., 39 (1998) 1295–1298.

    Google Scholar 

  10. DiIanni Carroll, C., Johnson, T.O., Tao, S., Lauri, G., Orlowski, M., Gluzman, I.Y., Goldberg, D.E. and Dolle, R.E., Evaluation of a structure-based statine cyclic diamino amide encoded combinatorial library against plasmepsin II and cathepsin D, Bioorg. Med. Chem. Lett., 8 (1998) 3203–3206.

    Google Scholar 

  11. Bigge, C.F., Hays, S.J., Novak, P.M., Drummond, J.T., Johnson, G. and Bobovski, T.P., New preparations of the N-methyl-D-aspartate receptor antagonist, 4-(3-phosphonopropyl)-2-piperazinecarboxylic acid (CPP), Tetrahedron Lett., 39 (1989) 5193–5196.

    Google Scholar 

  12. Jensen, K.J., Alsina, J., Songster, M.F., Vagner, J., Albericio, F. and Barany, G., Backbone amide linker strategy for solid-phase synthesis of C-terminal-modified and cyclic peptides, J. Am. Chem. Soc., 120 (1998) 5441–5452.

    Google Scholar 

  13. Boojamra, C.G., Burow, K., Thompson, L.A. and Ellman, J.A., Solid-phase synthesis of 1,4-benzodiazepine-2,5-diones. Library preparation and demonstration of synthesis generality, J. Org. Chem., 62 (1997) 1240–1256.

    Google Scholar 

  14. Sieber, P., An improved method for anchoring of 9-fluorenylmethoxycarbonyl amino acids to 4-alkoxybenzyl alcohol resins, Tetrahedron Lett., 28 (1987) 6147–6150.

    Google Scholar 

  15. a. Schnur, D.J., Design and diversity analysis of large combinatorial libraries using cell-based methods, Chem. Inf. Comput. Sci., 39 (1999) 36–45. b. Gillet, V.J., Willett, P., Bradshaw, J. and Green, D.V.S., Selecting combinatorial libraries to optimize diversity and physical properties, J. Chem. Inf. Comput. Sci., 39 (1999) 169–177.

    Google Scholar 

  16. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Delivery Rev., 23 (1997) 3–25.

    Google Scholar 

  17. Daylight Chemical Information Systems, Inc., Mission Viejo, CA.

  18. Chem-X software, Oxford Molecular, Oxford.

  19. a. Mason, J.S., Experiences with searching for molecular similarity in conformationally flexible 3D databases, In Dean, P.M. (Ed.), Molecular Similarity in Drug Design, Blackie Academic and Professional, Glasgow, 1995, pp. 138–162. b. Mason, J.S. and Pickett, S.D., Partition-based selection, In Willett, P. (Ed.), Perspectives in Drug Discovery and Design (PD3) – Special Issue on Computational Methods for the Analysis of Molecular Diversity, Kluwer, Dordrecht, 1997, pp. 85–114. c. Pickett, S.D., Mason, J.S. and McLay, I.M., Diversity pro-filing and design using 3D pharmacophores: pharmacophore-derived queries (PDQ), J. Chem. Inf. Comput. Sci., 36 (1996) 1214–1223. d. Mason, J.S., Morize, I., Menard, P.R., Cheney, D.L., Hulme, C. and Labaudiniere, R.F., New 4-point pharmacophore method for molecular similarity and diversity applications: Overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures, J. Med. Chem., 42 (1999) 3251–3264.

    Google Scholar 

  20. Kavalek, J., Machacek, V., Svobodova, G. and Sterba, V., Kinetics of acid-catalyzed cyclization of substituted hydantoinamides to substituted hydantoins, Collect. Czech. Chem. Commun., 8 (1987) 1999–2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herpin, T.F., Morton, G.C., Dunn, A.K. et al. Synthesis and diversity analysis of lead discovery piperazine-2-carboxamide libraries. Mol Divers 4, 221–232 (1998). https://doi.org/10.1023/A:1009637817478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009637817478

Navigation