Skip to main content
Log in

Bcl-2 Antisense Therapy for Cancer: The Art of Persuading Tumour Cells to Commit Suicide

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The Bcl-2 oncoprotein is a potent inhibitor of apoptosis induced by numerous physiological and pathological stimuli, and uncontrolled cell survival due to Bcl-2 overexpression has been shown to contribute to tumour formation and the development of autoimmune diseases. The multifunctional action of Bcl-2 is thought to prevent activation of the ced3/caspase-3 subfamily of ICE proteases, resulting in suppression of the death effector machinery. Since most conventional anti-cancer agents act by triggering this suicide pathway, overexpression of Bcl-2 in cancer cells has also been associated with drug resistance. The antisense approach to inhibition of gene expression relies on the binding of small synthetic oligodeoxynucleotides to a complementary base sequence on a target mRNA. As a consequence, expression of the corresponding gene is downregulated due to endonuclease-mediated hydrolysis of the mRNA strand, or to translational arrest arising from sterie hindrance by the RNA:DNA heterodimer. Since these mechanisms of action differ from those exerted by conventional anticancer agents, antisense oligodeoxynucleotides designed to specifically inhibit bcl-2 gene expression hold great promise as agents that could overcome clinical drug resistance, and improve the treatment outcome of many hitherto incurable cancer diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boring CC, Squires TS, Tong T, Montgomery S. Cancer statistics, 1994. CA Cancer J Clin 1994; 44: 7–26.

    Google Scholar 

  2. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Google Scholar 

  3. Evan Gl, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    Google Scholar 

  4. Marx J. Cell death studies yield cancer clues. Science 1993; 259: 760–761.

    Google Scholar 

  5. Steller H. Mechanisms and genes of cellular suicide. Science 1995; 267: 1445–1449.

    Google Scholar 

  6. Fisher DE. Apopcosis in cancer therapy: crossing the threshold. Cell 1994; 78: 539–542.

    Google Scholar 

  7. Tsujimoco Y, Croce CM. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 1986; 83: 5214–5218.

    Google Scholar 

  8. Ben Ezra JM, Kornscein MJ, Grimes MM, Krystal G. Small cell carcinomas of the lung express the Bcl-2 protein. Am J Pathol 1994; 145: 1036–1040.

    Google Scholar 

  9. Gee JM, Robertson JF, Ellis IO, et al. Immunocytochemical localization of BCL-2 protein in human breast cancers and its relationship to a series of prognostic markers and response to endocrine therapy. Int J Cancer 1994; 59: 619–628.

    Google Scholar 

  10. Hanada M, Krajewski S, Tanaka S, e.t al. Regulation of Bcl-2 oncoprotein levels with differentiation of human neuroblastoma cells. Cancer Res 1993; 53: 4978–4986.

    Google Scholar 

  11. Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivascava S, Moul JW. Elevated levels of apoptosis regulator proteins p53 and bcl-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J Urol 1996; 156: 1511–1516

    Google Scholar 

  12. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1–6.

    Google Scholar 

  13. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993; 53: 4701–4714.

    Google Scholar 

  14. Minn AJ, Velez P, Schendel SL, et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385: 353–357.

    Google Scholar 

  15. Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC. Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 1997; 94: 5113–5118.

    Google Scholar 

  16. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature 1997; 3: 614–620.

    Google Scholar 

  17. Reed JC. Double identity for proteins of the bcl-2 family. Nature 1997; 387: 773–776.

    Google Scholar 

  18. Shimizu S, Eguchi Y, Kamiike W, Matsuda H, Tsujimoto Y. Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene 1996; 12: 2251–2257.

    Google Scholar 

  19. Monney L, Otter I, Olivier R, et al. Bcl-2 overexpression blocks activation of the death protease CPP32/Yama/ apopain. Biochem Biophys Res Commun 1996; 221: 340–345.

    Google Scholar 

  20. Chinnaiyan AM, Orth K, O'Rourke K, Duan H, Poirier GG, Dixit VM. Molecular ordering of the cell death pathway. Bcl-2 and Bcl-xL function upstream of the CED-3-like apoptotic proteases. J Biol Chem 1996; 271: 4573–4576.

    Google Scholar 

  21. Miyashita T, Reed JC. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 1993; 81: 151–157.

    Google Scholar 

  22. Dole M, Nunez G, Merchant AK, et al. Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res 1994; 54: 3253–3259.

    Google Scholar 

  23. Ohmori T, Podack ER, Nishio K, et al. Apoptosis of lung cancer cells caused by some anti-cancer agents (MMC, CPT-11, ADM) is inhibited by bcl-2. Biochem Biophys Res Commun 1993; 192: 30–36.

    Google Scholar 

  24. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–619.

    Google Scholar 

  25. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 1993; 4: 327–332.

    Google Scholar 

  26. Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(l4;18) translocation. Cell 1986; 47: 19–28.

    Google Scholar 

  27. Strasser A, Harris AW, Bath ML, Cory S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990; 348: 331–333.

    Google Scholar 

  28. Yunis JJ, Mayer MG, Arnesen MA, Aeppli DP, Oken MM, Frizzera G. bcl-2 and other genomic alterations in the prognosis of large-cell lymphoma. N Engl J Med 1989; 320: 1047–1054.

    Google Scholar 

  29. Campos L, Renault JP, Sabido O, et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 1993; 81: 3091–3096.

    Google Scholar 

  30. Fontanini G, Vignati S, Bigini D, et al. Bcl-2 protein: a prognostic factor inversely correlated to p53 in nonsmall-cell lung cancer. Br J Cancer 1995; 71: 1003–1007.

    Google Scholar 

  31. Manne U, Myers RB, Moron C, et al. Prognostic significance of Bcl-2 expression and p53 nuclear accumulation in colorectal adenocarcinoma. Int J Cancer 1997; 74: 346–358.

    Google Scholar 

  32. Borner C. Diminished cell proliferation associated with the death-protective activity of Bcl-2. J Biol Chem 1996; 271: 12695–12698.

    Google Scholar 

  33. Helene C, Toulme JJ. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta 1990; 1049: 99–125.

    Google Scholar 

  34. Milligan JF, Matteucci MD, Martin JC. Current concepts in antisense drug design. J Med Chem 1993; 36: 1923–1937.

    Google Scholar 

  35. Crooke ST. Therapeutic applications of oligonucleotides. Biotechnology NY 1992; 10: 882–886.

    Google Scholar 

  36. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978; 75: 280–284.

    Google Scholar 

  37. Kimura S, Maekawa T, Hirakawa K, Murakami A, Abe T. Alterations of c-myc expression by antisense oligodeoxynucleotides enhance the induction of apoptosis in HL-60 cells. Cancer Res 1995; 55: 1379–1384.

    Google Scholar 

  38. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D. Antitumor activity of a phosphororhioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 1996; 2: 668–675.

    Google Scholar 

  39. Mukhopadhyay T, Tainsky M, Cavender AC, Roth JA. Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by antisense RNA. Cancer Res 1991; 51: 1744–1748.

    Google Scholar 

  40. Skorski T, Nieborowska Skorska M, Wlodarski P, et al. Treatment of Philadelphia leukemia in severe combined immunodeficient mice by combination of cyclophosphamide and bcr/abl antisense oligodeoxynucleotides. J Natl Cancer Inst 1997; 89: 124–133.

    Google Scholar 

  41. Ziegler A, Luedke GH, Fabbro D, Altmann K-H, Stahel RA, Zangemeister-Wittke U. Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the bcl-2 coding sequence. J Natl Cancer lnst 1997; 89: 1027–1036.

    Google Scholar 

  42. Dean N, McKay R, Miraglia L, et al. Inhibition of Growth of Human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res 1996; 56: 3499–3507.

    Google Scholar 

  43. Stein CA, Subasinghe C, Shinozuka K, Cohen JS. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 1988; 16: 3209–3221.

    Google Scholar 

  44. Wagner RW. The state of the art in antisense research. Nat Med 1995; 1: 1116–1118.

    Google Scholar 

  45. Wagner RW. Gene inhibition using antisense oligodeoxynucleotides. Nature 1994; 372: 333–335.

    Google Scholar 

  46. Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents - is the bullet really magical? Science 1993; 261: 1004–1012.

    Google Scholar 

  47. Gewirtz AM, Stein CA, Glazer PM. Facilitating oligonucleotide delivery: helping antisense deliver on its promise. Proc Natl Acad Sci USA 1996; 93: 3161–3163.

    Google Scholar 

  48. Bennett CF, Chiang MY, Chan H, Shoemaker JE, Mirabelli CK. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 1992; 41: 1023–1033.

    Google Scholar 

  49. Matteucci MD, Wagner RW. In pursuit of antisense. Nature 1996; 384: 20–22.

    Google Scholar 

  50. Raynaud FI, Orr RM, Goddard PM, et al. Pharmacokinetics of G3139, a phosphorothioate oligodeoxynucleotide antisense to bcl-2, after intravenous administration or continuous subcutaneous infusion to mice. J Pharmacol Exp Ther 1997; 281: 420–427.

    Google Scholar 

  51. Pisetsky DS. Immunologic consequences of nucleic acid therapy. Antiseme Res Dev 1995; 5: 219–225.

    Google Scholar 

  52. Galbraith WM, Hobson WC, Giclas PC, Schechter PJ, Agrawal S. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleocides in the monkey. Antisense Res Dev 1994; 4: 201–6X.

    Google Scholar 

  53. Monia BP, Sasmor H, Johnston JF, et al. Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc Natl Acad Sci USA 1996; 93: 15481–15484.

    Google Scholar 

  54. Guvakova MA, Yakubov LA, Viodavsky I, Tonkinson JL, Stein CA. Phosphorochioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 1995; 270: 2620–2627.

    Google Scholar 

  55. Berchem GJ, Bosseler M, Sugars LY, Voeller HJ, Zeitlin S, Gelmann EP. Androgens induce resistance to bcl-2-mediated apoptosis in LNCaP prostate cancer cells. Cancel-Res 1995; 55: 735–738.

    Google Scholar 

  56. Cotter FE, Johnson P, Hall P, et al. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 1994; 9: 3049–3055.

    Google Scholar 

  57. Reed JC, Stein C, Subasinghe C, et al. Antisense-mediated inhibition of BCL-2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 1990; 50: 6565–6570.

    Google Scholar 

  58. Kitada S, Miyashita T, Tanaka S, Reed JC. Investigations of antisense oligonucleotides targeted against bcl-2 RNAs. Antisense Res Dev 1993; 3: 157–169.

    Google Scholar 

  59. Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC. Reversal of chernoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 1994; 4: 71–79.

    Google Scholar 

  60. Campos L, Sabido O, Rouault JP, Guyotat D. Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 1994; 84: 595–600.

    Google Scholar 

  61. Bacon TA, Wickstrom E. Walking along human c-myc mRNA with antisense oligodeoxynucleotides: maximum efficacy at the 5' cap region. Oncogene Res 1991; 6: 13–19.

    Google Scholar 

  62. Robinson LA, Smith LJ, Fontaine MP, Kay HD, Mountjoy CP, Pirruccello SJ. c-myc antisense oligodeoxyribonucleotides inhibit proliferation of non-small cell lung cancer. Ann Thorac Surg 1995; 60: 1583–1591.

    Google Scholar 

  63. Cotter FE, Corbo M, Raynaud F, et al. Bcl-2 antisense therapy in lymphoma: in vitro and in vivo mechanisms, efficacy, pharmacokinetic and toxicity studies. Ann Oncol 1996; 7: 100.

    Google Scholar 

  64. Webb A, Cunningham D, Cotter F, et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 1997; 349: 1137–1141.

    Google Scholar 

  65. Teixeira C, Reed JC, Pratt MA. Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res 1995; 55: 3902–3907.

    Google Scholar 

  66. Morelli S, Delia D, Capaccioli S, et al. The ancisense bcl-2-IgH transcript is an optimal target for synthetic oligonucleotides. Proc Natl Acad Sci USA 1997; 94: 8150–8155.

    Google Scholar 

  67. Simonian PL, Grillot DA, Nunez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 1997; 90: 1208–1216.

    Google Scholar 

  68. Matsuzaki Y, Nakayama K, Tomita T, Isoda M, Loh DY, Nakauchi H. Role of bcl-2 in the development of lymphoid cells from the hematopoietic stem cell. Blood 1997; 89: 853–862.

    Google Scholar 

  69. Froesch BA, Luedke GH, Ziegler A, Stahel RA, Zangemeister-Wittke U. The synergistic cytotoxic effect of a doxorubicin immunoconjugate and bcl-2 antisense oligonucleotides on non-resistant and drug resistant small cell lung cancer cell lines. Tumor Targeting 1996; 2: 265–276.

    Google Scholar 

  70. Matzura O, Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Computer Applications in Biosciences (CABIOS) 1996; 12: 247–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zangemeister-Wittke, U., Ziegler, A. Bcl-2 Antisense Therapy for Cancer: The Art of Persuading Tumour Cells to Commit Suicide. Apoptosis 3, 67–74 (1998). https://doi.org/10.1023/A:1009636722713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009636722713

Navigation